forked from zhao-ht/GIMLET
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresult_statistic.py
254 lines (200 loc) · 11.4 KB
/
result_statistic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import pandas as pd
import numpy as np
import plotly.graph_objects as go
import plotly
import os
import argparse
import commentjson
from tqdm import tqdm
parser = argparse.ArgumentParser()
parser.add_argument("--result_file_list",type=str,nargs='+')
parser.add_argument("--output_result",action="store_true")
parser.add_argument("--output_prefix",type=str,default='')
parser.add_argument('--plot_figure',action='store_true')
parser.add_argument('--few_shot',action='store_true')
parser.add_argument('--augment_type',type=str,default='',help='do not set value; auto detected in code')
parser.add_argument('--augment',action='store_true')
parser.add_argument('--prompt_augmentation_file_prefix',default='augmented')
parser.add_argument('--refer_best_result',type=str,default='',help='when multi prompt is tested, this arg specify which prompt to choose')
args = parser.parse_args()
if args.output_prefix!='':
args.output_prefix='_'+args.output_prefix
def task_type(dataset):
if dataset in ['esol','freesolv','lipo']:
return 'reg'
else:
return 'cla'
def model_name_replace(name):
return name.replace('.ckpt','.pt')
def modify_name(name):
name = name.replace('.ckpt', '.pt')
name = name.replace('ckpts/', '')
if name[-1] == '/':
name = name[:-1]
return name
for result_file in tqdm(args.result_file_list):
try:
result_origin = pd.read_csv(os.path.join('cache', result_file), header=None)
except:
result_origin=pd.read_csv(os.path.join('cache',result_file),header=None, encoding = 'gb18030')
if 'few_shot' in result_file:
args.few_shot=True
args.augment_type=eval(result_file.split('_')[3])
args.output_prefix='_fewshot'
result_origin.columns =['None','dataset','split', 'model_name_or_path','epoch','lr','runseed','best_val_idx','train_roc','val_roc','test_roc','prompt'
] if args.few_shot else ['None','dataset', 'split','model_name_or_path', 'train_roc', 'val_roc', 'test_roc', 'prompt']
result_origin['model_name_or_path'] = result_origin['model_name_or_path'].apply(model_name_replace)
if args.augment:
args.augment_type = result_file.split('_')[2]
assert args.augment_type in ['rewrited', 'expanded', 'detailed', 'shortened','name']
if args.refer_best_result!='':
file_name=os.path.join('cache','result_max_prompt_table.csv')
prompts_ref = pd.read_csv(file_name,index_col='unique_task_id')
rename_keys={}
for name in prompts_ref.columns:
name_new=modify_name(name)
rename_keys[name]=name_new
prompts_ref=prompts_ref.rename(columns=rename_keys)
# splited_name = args.model_name_or_path.split('/')
# model_name=splited_name[-1] if len(splited_name[-1])>0 else splited_name[-2]
model_name=modify_name(args.refer_best_result)
prompts_ref=prompts_ref[model_name]
with open("prompts_backup/downstream_task_prompt_multitask_new.json", 'r') as load_f:
prompts_origin = commentjson.load(load_f)
with open("prompts/{}_downstream_task_prompt_multitask_new.json".format(args.prompt_augmentation_file_prefix), 'r') as load_f:
prompts_aug = commentjson.load(load_f)
prompt_aug_ref=[]
for task_id,prompt in prompts_ref.iteritems():
if not pd.isna(prompt):
dataset,ind=task_id.split('@')
if dataset in prompts_aug:
id=prompts_origin[dataset][ind].index(prompt)
prompt_new=prompts_aug[dataset][ind][args.augment_type][id]
prompt_aug_ref.append([task_id,prompt_new])
else:
print('{} not in prompts_aug'.format(task_id))
prompt_aug_ref=pd.DataFrame(prompt_aug_ref,columns=['unique_task_id','prompt'])
prompt_aug_ref=prompt_aug_ref.set_index('unique_task_id')
result_origin=pd.merge(result_origin, prompt_aug_ref, on=['prompt'])
if args.few_shot:
args.task_type='few_shot'
elif args.augment:
args.task_type='augment'
else:
args.task_type='normal'
models_key=set(result_origin['model_name_or_path'])
result_per_task=[]
models_key_names={}
for model in models_key:
if 'test-mlmv' in model:
name_grapht0=model
models_key_names[name_grapht0]='GraphT0'
elif 'KV' in model:
name_kvplm=model
models_key_names[name_kvplm] = 'KVPLM'
elif 'scibert' in model:
name_momu=model
models_key_names[name_momu] = 'MoMu'
for model in models_key:
result=result_origin[result_origin['model_name_or_path']==model]
datasets_key=set(result['dataset'])
for dataset in datasets_key:
result_dataset=result[result['dataset']==dataset]
split_keys=set(result_dataset['split'])
for split in split_keys:
result_split=result_dataset[result_dataset['split']==split]
prompt_keys=set(result_split['prompt'])
# assert len(prompt_keys)==len(result_split) #make sure no prompt is test twice
mean_task=result_split[['train_roc','val_roc','test_roc']].mean()
max_task = result_split[['train_roc', 'val_roc', 'test_roc']].max() if task_type(dataset)=='cla' else result_split[['train_roc', 'val_roc', 'test_roc']].min()
try:
max_prompt=result_split.loc[result_split['test_roc'].idxmax()]['prompt'] if task_type(dataset)=='cla' else result_split.loc[result_split['test_roc'].idxmin()]['prompt']
max_abs_prompt=result_split.loc[np.abs(result_split['test_roc']-0.5).idxmax()]['prompt'] if task_type(dataset)=='cla' else ''
except:
pass
result_per_task.append([model,args.task_type,args.augment_type, dataset, split,str(dataset)+'@'+str(split), *mean_task,*max_task,max_prompt,max_abs_prompt])
result_per_task=pd.DataFrame(result_per_task,columns=['model','task_type','augment_type', 'dataset', 'split','unique_task_id','train_mean','val_mean','test_mean','train_max','val_max','test_max','max_prompt','max_abs_prompt'])
models_key = set(result_per_task['model'])
if args.output_result:
file_name=os.path.join('cache','result{}_per_task.csv'.format(args.output_prefix))
result_list = []
if os.path.exists(file_name):
result_list.append(pd.read_csv(file_name,index_col=0))
result_list.append(result_per_task)
result_per_task_all = pd.concat(result_list, ignore_index=True)
result_per_task_all.to_csv(file_name, header=True)
key_individual_record=['test_max','max_prompt','max_abs_prompt'] if not (args.few_shot or args.augment) else ['test_max']
result_table_dict={}
for key in key_individual_record:
file_name='result{}_'.format(args.output_prefix)+key+'_table.csv'
file_name=os.path.join('cache', file_name)
result_list=[]
if os.path.exists(file_name):
result_list.append(pd.read_csv(file_name,index_col='unique_task_id'))
for model in models_key:
table_per=result_per_task[result_per_task['model']==model][['unique_task_id',key]]
table_per=table_per.set_index('unique_task_id')
model_name=model if not args.augment else 'augment_'+args.augment_type+'_'+model
table_per.columns=[model_name]
result_list.append(table_per)
result_table=pd.concat(result_list,axis=1)
result_table=result_table.sort_index()
if args.output_result:
result_table.to_csv(file_name, header=True)
result_table_dict[key] = result_table
result_per_dataset=[]
for model in models_key:
result=result_per_task[result_per_task['model']==model]
datasets_key=set(result['dataset'])
for dataset in datasets_key:
result_dataset=result[result['dataset']==dataset]
mean_dataset=result_dataset[['train_mean','val_mean','test_mean','train_max','val_max','test_max']].mean()
result_per_dataset.append([model,dataset,*mean_dataset])
result_per_dataset=pd.DataFrame(result_per_dataset,columns=['model', 'dataset','train_mean','val_mean','test_mean','train_max','val_max','test_max'])
datasets_key=list(datasets_key)
subbenchmarks={'Average_bio':['hiv','bace','muv'],'Average_tox':['toxcast','tox21'],'Average_pha':['bbbp','cyp450'],'Average_bench':['hiv','bace','muv','toxcast','tox21','bbbp','cyp450'],'Average_phy':['esol','lipo','freesolv'],}
result_per_dataset_table=result_per_dataset[['model','dataset','test_max']]
result_per_dataset_table_permutated=[]
for model in models_key:
result_rec=[]
subbenchmarks_result = {}
for key in subbenchmarks.keys():
subbenchmarks_result[key] = []
for dataset in datasets_key:
result=result_per_dataset_table.loc[(result_per_dataset_table['model']==model)&(result_per_dataset_table['dataset']==dataset),'test_max'].values[0]
result_rec.append(result)
for benchmark in subbenchmarks.keys():
if dataset in subbenchmarks[benchmark]:
subbenchmarks_result[benchmark].append(result)
subbenchmarks_result_list=[]
for key in subbenchmarks.keys():
subbenchmarks_result_list.append(np.mean(subbenchmarks_result[key]))
result_per_dataset_table_permutated.append([model,args.task_type,args.augment_type,*result_rec,np.mean(result_rec),*subbenchmarks_result_list])
result_per_dataset_table_permutated=pd.DataFrame(result_per_dataset_table_permutated,columns=['Method','task_type','augment_type',*datasets_key,'Average',*list(subbenchmarks.keys())])
if args.output_result:
result_per_dataset_table_permutated = result_per_dataset_table_permutated.reindex(sorted(result_per_dataset_table_permutated.columns), axis=1)
# if args.few_shot:
# file_name='result_few_shot_result_per_dataset_table_permutated.csv'
# # elif args.augment:
# # fime_name='result_augment_result_per_dataset_table_permutated.csv'
# else:
file_name=os.path.join('cache','result{}_result_per_dataset_table_permutated.csv'.format(args.output_prefix))
result_list = []
if os.path.exists(file_name):
result_list.append(pd.read_csv(file_name,index_col=0))
result_list.append(result_per_dataset_table_permutated)
result_per_dataset_table_permutated_all = pd.concat(result_list,ignore_index=True)
result_per_dataset_table_permutated_all.to_csv(file_name, header=True)
average_over_tasks=[]
for model in models_key:
average_over_tasks.append([model,args.task_type,args.augment_type,float(result_per_task.loc[result_per_task['model']==model,'test_max'].mean())])
average_over_tasks=pd.DataFrame(average_over_tasks,columns=['Model','task_type','augment_type','Average'])
if args.output_result:
file_name = 'result{}_average_over_tasks.csv'.format(args.output_prefix)
# file_name = 'result_few_shot_average_over_tasks.csv' if args.few_shot else 'result_average_over_tasks.csv'
result_list = []
if os.path.exists(file_name):
result_list.append(pd.read_csv(file_name,index_col=0))
result_list.append(average_over_tasks)
average_over_tasks_all = pd.concat(result_list,ignore_index=True)
average_over_tasks_all.to_csv(file_name, header=True)