forked from zhao-ht/GIMLET
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinetune_property_prediction_graph_only.py
444 lines (359 loc) · 17.2 KB
/
finetune_property_prediction_graph_only.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
# from config import args
# from util import get_num_task
# from dataloaders import MoleculeDataset
from os.path import join
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
# from config import args
from sklearn.metrics import (roc_auc_score)
from dataloaders.splitters import random_scaffold_split, random_split, scaffold_split
from torch.utils.data import DataLoader
# from util import get_num_task
from dataloaders import MoleculeDatasetRich
# from model import GinT5TransformerForConditionalGeneration
from model import GraphormerModel, GraphormerConfig,GinConfig,KVPLMConfig,Graphormer_version_dict, get_graph_model
from dataloaders import GraphData_collator
from transformers import (
HfArgumentParser,
)
from tqdm import tqdm
import argparse
parser = argparse.ArgumentParser()
# about seed and basic infod
# parser.add_argument('--seed', type=int, default=42)
parser.add_argument('--runseed', type=int, default=0)
parser.add_argument('--device', type=int, default=0)
parser.add_argument('--no_cuda',action='store_true')
# about dataset and dataloader
parser.add_argument('--input_data_dir', type=str, default='')
parser.add_argument('--dataset', type=str, default='bace')
parser.add_argument('--num_workers', type=int, default=4)
# about training strategies
parser.add_argument('--split', type=str, default='scaffold')
parser.add_argument('--batch_size', type=int, default=256)
parser.add_argument('--grad_accum_step',type=int,default=1)
parser.add_argument('--epochs', type=int, default=100)
parser.add_argument('--lr', type=float, default=0.001)
parser.add_argument('--lr_scale', type=float, default=1)
parser.add_argument('--decay', type=float, default=0)
# about molecule GNN
# parser.add_argument('--gnn_type', type=str, default='gin')
# parser.add_argument('--num_layer', type=int, default=5)
# parser.add_argument('--emb_dim', type=int, default=300)
# parser.add_argument('--dropout_ratio', type=float, default=0.5)
parser.add_argument('--JK', type=str, default='last')
parser.add_argument('--gnn_lr_scale', type=float, default=1)
parser.add_argument('--model_3d', type=str, default='schnet', choices=['schnet'])
# for AttributeMask
parser.add_argument('--mask_rate', type=float, default=0.15)
parser.add_argument('--mask_edge', type=int, default=0)
# for ContextPred
parser.add_argument('--csize', type=int, default=3)
parser.add_argument('--contextpred_neg_samples', type=int, default=1)
# for SchNet
parser.add_argument('--num_filters', type=int, default=128)
parser.add_argument('--num_interactions', type=int, default=6)
parser.add_argument('--num_gaussians', type=int, default=51)
parser.add_argument('--cutoff', type=float, default=10)
parser.add_argument('--readout', type=str, default='mean', choices=['mean', 'add'])
parser.add_argument('--schnet_lr_scale', type=float, default=1)
# for 2D-3D Contrastive CL
parser.add_argument('--CL_neg_samples', type=int, default=1)
parser.add_argument('--CL_similarity_metric', type=str, default='InfoNCE_dot_prod',
choices=['InfoNCE_dot_prod', 'EBM_dot_prod'])
parser.add_argument('--T', type=float, default=0.1)
parser.add_argument('--normalize', dest='normalize', action='store_true')
parser.add_argument('--no_normalize', dest='normalize', action='store_false')
parser.add_argument('--SSL_masking_ratio', type=float, default=0)
# This is for generative SSL.
parser.add_argument('--AE_model', type=str, default='AE', choices=['AE', 'VAE'])
parser.set_defaults(AE_model='AE')
# for 2D-3D AutoEncoder
parser.add_argument('--AE_loss', type=str, default='l2', choices=['l1', 'l2', 'cosine'])
parser.add_argument('--detach_target', dest='detach_target', action='store_true')
parser.add_argument('--no_detach_target', dest='detach_target', action='store_false')
parser.set_defaults(detach_target=True)
# for 2D-3D Variational AutoEncoder
parser.add_argument('--beta', type=float, default=1)
# for 2D-3D Contrastive CL and AE/VAE
parser.add_argument('--alpha_1', type=float, default=1)
parser.add_argument('--alpha_2', type=float, default=1)
# for 2D SSL and 3D-2D SSL
parser.add_argument('--SSL_2D_mode', type=str, default='AM')
parser.add_argument('--alpha_3', type=float, default=0.1)
parser.add_argument('--gamma_joao', type=float, default=0.1)
parser.add_argument('--gamma_joaov2', type=float, default=0.1)
# about if we would print out eval metric for training data
parser.add_argument('--eval_train', dest='eval_train', action='store_true')
# parser.add_argument('--no_eval_train', dest='eval_train', action='store_false')
# parser.set_defaults(eval_train=True)
# about loading and saving
parser.add_argument('--model_name_or_path', type=str, default='')
parser.add_argument('--output_model_dir', type=str, default='')
# verbosity
parser.add_argument('--verbose', dest='verbose', action='store_true')
parser.add_argument('--no_verbose', dest='verbose', action='store_false')
parser.set_defaults(verbose=False)
parser.add_argument('--backbone',type=str,default='gnn')
parser.add_argument('--transform_in_collator', action='store_true')
parser.add_argument('--rich_features',action='store_true')
parser.add_argument('--return_model_size',action='store_true')
def get_num_task(dataset):
""" used in molecule_finetune.py """
if dataset == 'tox21':
return 12
elif dataset in ['hiv', 'bace', 'bbbp', 'donor','esol','freesolv','lipo']:
return 1
elif dataset == 'pcba':
return 108
elif dataset == 'muv':
return 17
elif dataset == 'toxcast':
return 617
elif dataset == 'sider':
return 27
elif dataset == 'clintox':
return 2
elif dataset == 'cyp450':
return 5
raise ValueError(dataset+': Invalid dataset name.')
def task_type(dataset):
if dataset in ['esol','freesolv','lipo']:
return 'reg'
else:
return 'cla'
def better_result(result,reference,dataset):
if task_type(dataset)=='cla':
return result>reference
else:
assert task_type(dataset)=='reg'
return result<reference
args,left = parser.parse_known_args()
assert args.backbone in ['graphormer', 'gnn','kvplm','grapht5']
if args.backbone == 'graphormer':
parsernew = HfArgumentParser(GraphormerConfig)
# parsernew = argparse.ArgumentParser()
parsernew = GraphormerModel.add_args(parsernew)
graph_args = parsernew.parse_args(left)
graph_args=Graphormer_version_dict[graph_args.arch](graph_args)
# print('graphormer_args',graphormer_args)
elif args.backbone == 'gnn':
parsernew = HfArgumentParser(GinConfig)
graph_args = parsernew.parse_args(left)
elif args.backbone == 'kvplm':
parsernew = HfArgumentParser(KVPLMConfig)
graph_args = parsernew.parse_args(left)
elif args.backbone == 'grapht5':
parsernew = HfArgumentParser(GraphormerConfig)
# parsernew = argparse.ArgumentParser()
parsernew = GraphormerModel.add_args(parsernew)
graph_args = parsernew.parse_args(left)
graph_args=Graphormer_version_dict[graph_args.arch](graph_args)
# print('graphormer_args',graphormer_args)
if task_type(args.dataset)=='cla':
graph_args.graphonly_problem_type='multi_label_classification'
else:
graph_args.graphonly_problem_type = 'regression'
assert args.batch_size % args.grad_accum_step==0
args.batch_size_ori=args.batch_size
args.batch_size=args.batch_size_ori//args.grad_accum_step
print('arguments\t', args)
def train(model, device, loader, optimizer):
model.train()
total_loss = 0
# data_list = []
# for data in tqdm(loader):
# data_list.append(data.edge_input.max())
for step, batch in tqdm(enumerate(loader)):
batch = batch.to(device)
if args.backbone=='grapht5':
pred = model(graph=batch,labels=batch.y)['logits']
else:
pred = model(batch)
y = batch.y.view(pred.shape).to(torch.float64)
# Whether y is non-null or not.
is_valid = y != -100
# Loss matrix
loss_mat = criterion(pred.double(), y)
# loss matrix after removing null target
loss_mat = torch.where(
is_valid, loss_mat,
torch.zeros(loss_mat.shape).to(device).to(loss_mat.dtype))
# optimizer.zero_grad()
loss = torch.sum(loss_mat) / torch.sum(is_valid)
loss=loss/args.grad_accum_step
loss.backward()
# optimizer.step()
if step % args.grad_accum_step == 0:
optimizer.step()
optimizer.zero_grad()
total_loss += loss.detach().item()
return total_loss / len(loader)*args.grad_accum_step
def eval(model, device, loader):
model.eval()
y_true, y_scores = [], []
for step, batch in enumerate(loader):
batch = batch.to(device)
with torch.no_grad():
if args.backbone!='grapht5':
pred = model(batch)
else:
pred = model(batch)['logits']
true = batch.y.view(pred.shape)
y_true.append(true)
y_scores.append(pred)
y_true = torch.cat(y_true, dim=0).cpu().numpy()
y_scores = torch.cat(y_scores, dim=0).cpu().numpy()
if task_type(args.dataset)=='cla':
roc_list = []
for i in range(y_true.shape[1]):
# AUC is only defined when there is at least one positive data.
if np.sum(y_true[:, i] == 1) > 0 and np.sum(y_true[:, i] == 0) > 0:
is_valid = y_true[:, i] !=-100
roc_list.append(roc_auc_score(y_true[is_valid, i], y_scores[is_valid, i]))
else:
print('{} is invalid'.format(i))
if len(roc_list) < y_true.shape[1]:
print(len(roc_list))
print('Some target is missing!')
print('Missing ratio: %f' %(1 - float(len(roc_list)) / y_true.shape[1]))
return sum(roc_list) / len(roc_list), 0, y_true, y_scores
else:
assert task_type(args.dataset)=='reg'
roc_list = []
for i in range(y_true.shape[1]):
# AUC is only defined when there is at least one positive data.
# if np.sum(y_true[:, i] == 1) > 0 and np.sum(y_true[:, i] == 0) > 0:
ind = ~np.isnan(y_true[:, i])
mrs = (y_true[ind, i] - y_scores[ind, i]).std()
roc_list.append(mrs)
# roc_list.append(r2_score(y_true[ind, i], y_scores[ind, i]))
# # ratio=ind.float().mean()
# # y_true=y_true[ind]
# # y_scores=y_scores[ind]
#
# mrs=(y_true-y_scores).std()
# naive_msr=(y_true-y_true.mean()).std()
#
# corrcoef=np.corrcoef(y_true,y_scores)[0,1]
#
# try:
# r2=r2_score(y_true,y_scores)
# except:
# r2=np.nan
if len(roc_list) < y_true.shape[1]:
print(len(roc_list))
print('Some target is missing!')
print('Missing ratio: %f' %(1 - float(len(roc_list)) / y_true.shape[1]))
return sum(roc_list) / len(roc_list), 0, y_true, y_scores
if __name__ == '__main__':
torch.manual_seed(args.runseed)
np.random.seed(args.runseed)
device = torch.device('cuda:' + str(args.device)) \
if (not args.no_cuda) else torch.device('cpu')
# if torch.cuda.is_available():
# torch.cuda.manual_seed_all(args.runseed)
# Bunch of classification tasks
args.num_tasks = get_num_task(args.dataset)
dataset_folder = 'property_data/'
if args.backbone == 'kvplm':
dataset = MoleculeDatasetRich(root=dataset_folder,name=args.dataset, return_id=True,return_smiles=True,rich_features=args.rich_features)
else:
dataset = MoleculeDatasetRich(root=dataset_folder,name=args.dataset,rich_features=args.rich_features)
print(dataset)
if args.split == 'scaffold':
smiles_list = pd.read_csv(dataset_folder + args.dataset + '/processed/smiles.csv',
header=None)[0].tolist()
# pos_ids = []
# for i, data in enumerate(dataset):
# if int(data.y) == -1:
# pos_ids.append(i)
# pos_smiles=[smiles_list[i] for i in pos_ids]
train_dataset, valid_dataset, test_dataset = scaffold_split(
dataset, smiles_list, null_value=0, frac_train=0.8,
frac_valid=0.1, frac_test=0.1)
print('split via scaffold')
elif args.split == 'random':
train_dataset, valid_dataset, test_dataset = random_split(
dataset, null_value=0, frac_train=0.8, frac_valid=0.1,
frac_test=0.1, seed=args.runseed)
print('randomly split')
elif args.split == 'random_scaffold':
smiles_list = pd.read_csv(dataset_folder + args.dataset + '/processed/smiles.csv',
header=None)[0].tolist()
train_dataset, valid_dataset, test_dataset = random_scaffold_split(
dataset, smiles_list, null_value=0, frac_train=0.8,
frac_valid=0.1, frac_test=0.1, seed=args.runseed)
print('random scaffold')
else:
raise ValueError('Invalid split option.')
print(train_dataset[0])
data_collator=GraphData_collator[args.backbone](transform_in_collator=args.transform_in_collator,include_y=True,rich_features=args.rich_features)
train_loader = DataLoader(train_dataset, batch_size=args.batch_size,
shuffle=True, num_workers=args.num_workers,collate_fn=data_collator)
val_loader = DataLoader(valid_dataset, batch_size=args.batch_size,
shuffle=False, num_workers=args.num_workers,collate_fn=data_collator)
test_loader = DataLoader(test_dataset, batch_size=args.batch_size,
shuffle=False, num_workers=args.num_workers,collate_fn=data_collator)
# set up model
model,optimizer=get_graph_model(args,graph_args)
model.to(device)
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
if args.return_model_size:
print('Model size: {}'.format(count_parameters(model)))
# print(model)
# set up optimizer
# different learning rates for different parts of GNN
criterion = nn.BCEWithLogitsLoss(reduction='none') if task_type(args.dataset)=='cla' else torch.nn.MSELoss(reduction='none')
train_roc_list, val_roc_list, test_roc_list = [], [], []
train_acc_list, val_acc_list, test_acc_list = [], [], []
best_val_roc, best_val_idx = None, 0
for epoch in range(1, args.epochs + 1):
loss_acc = train(model, device, train_loader, optimizer)
print('Epoch: {}\nLoss: {}'.format(epoch, loss_acc))
if args.eval_train:
train_roc, train_acc, train_target, train_pred = eval(model, device, train_loader)
else:
train_roc = train_acc = 0
val_roc, val_acc, val_target, val_pred = eval(model, device, val_loader)
test_roc, test_acc, test_target, test_pred = eval(model, device, test_loader)
train_roc_list.append(train_roc)
train_acc_list.append(train_acc)
val_roc_list.append(val_roc)
val_acc_list.append(val_acc)
test_roc_list.append(test_roc)
test_acc_list.append(test_acc)
print('train: {:.6f}\tval: {:.6f}\ttest: {:.6f}'.format(train_roc, val_roc, test_roc))
print()
if best_val_roc is None:
best_val_roc=val_roc
assert best_val_idx==0
if better_result(val_roc, best_val_roc,args.dataset):
best_val_roc = val_roc
best_val_idx = epoch - 1
if not args.output_model_dir == '':
output_model_path = join(args.output_model_dir, 'model_best.pth')
saved_model_dict = model.state_dict()
torch.save(saved_model_dict, output_model_path)
filename = join(args.output_model_dir, 'evaluation_best.pth')
np.savez(filename, val_target=val_target, val_pred=val_pred,
test_target=test_target, test_pred=test_pred)
# print('best train: {:.6f}\tval: {:.6f}\ttest: {:.6f}'.format(train_roc_list[best_val_idx], val_roc_list[best_val_idx], test_roc_list[best_val_idx]))
# with open('result.log', 'a+') as f:
# f.write(args.dataset + ' ' +args.input_model_file+ ' ' + str(args.runseed) + ' ' + 'best train: {:.6f}\tval: {:.6f}\ttest: {:.6f}'.format(train_roc_list[best_val_idx], val_roc_list[best_val_idx], test_roc_list[best_val_idx]))
# f.write('\n')
method_name=args.backbone if args.backbone!='gnn' else graph_args.gnn_type
record = [(args.dataset,method_name,getattr(graph_args, "restore_file_graphormer", None), 'rich_features:'+str(args.rich_features), 'epochs:'+str(args.epochs), 'lr:'+str(args.lr), 'runseed:'+str(args.runseed), 'best_val_idx:'+str(best_val_idx),
train_roc_list[best_val_idx], val_roc_list[best_val_idx], test_roc_list[best_val_idx])]
df = pd.DataFrame(record,
columns=['dataset', 'backbone','input_model_file','rich_features', 'epoch', 'lr', 'runseed', 'best_val_idx', 'train_best',
'valid_best', 'test_best'
])
df.to_csv(join('cache','result_graph_transformer_graph_only.csv'), mode='a', header=False)
if args.output_model_dir is not '':
output_model_path = join(args.output_model_dir, 'model_final.pth')
saved_model_dict = model.state_dict()
torch.save(saved_model_dict, output_model_path)