-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgen_embeds.py
150 lines (129 loc) · 6.07 KB
/
gen_embeds.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
"""
Precomputes embeddings for a given model and dataset.
"""
import json
from argparse import ArgumentParser
from pathlib import Path
import torch
from torch.backends import cudnn
from tqdm import tqdm
from eval_cluster_utils import knn_classifier
from loaders import get_dataset
from model_builders import load_model
@torch.no_grad()
def compute_embedding(model, loader):
embeds = []
labels = []
for images, label in tqdm(loader):
images = images.cuda()
image_features = model(images).float()
embeds.append(image_features.cpu())
labels.append(label)
return torch.cat(embeds), torch.cat(labels)
@torch.no_grad()
def compute_neighbors(embedding, k):
embedding = embedding / embedding.norm(p=2, dim=-1, keepdim=True)
num_embeds = embedding.shape[0]
if num_embeds <= 8*1e4:
dists = embedding @ embedding.permute(1, 0)
# exclude self-similarity
dists.fill_diagonal_(-torch.inf)
return dists.topk(k, dim=-1)
else:
topk_knn_ids = []
topk_knn_dists = []
print("Chunk-wise implementation of k-nn in GPU")
# num_chunks = 12000
step_size = 64 # num_embeds // num_chunks
embedding = embedding.cuda()
for idx in tqdm(range(0, num_embeds, step_size)):
idx_next_chunk = min((idx + step_size), num_embeds)
features = embedding[idx : idx_next_chunk, :]
# calculate the dot product dist
dists_chunk = torch.mm(features, embedding.T).cpu()
dists_chunk.fill_diagonal_(-torch.inf)
max_dists, indices = dists_chunk.topk(k, dim=-1)
topk_knn_ids.append(indices)
topk_knn_dists.append(max_dists)
return torch.cat(topk_knn_dists), torch.cat(topk_knn_ids)
def get_outpath(arch, dataset, datapath='data'):
datapath = Path(datapath).expanduser().resolve()
arch = arch.replace('/', '_')
dataset = dataset.replace('/', '_')
return datapath / 'embeddings' / f'{dataset}-{arch}'
def get_nn(args, preprocess, model, test=False):
datapath = './data' if args.dataset in ["CIFAR10", "CIFAR100", "STL10", "CIFAR20"] else args.datapath
dset = get_dataset(args.dataset, datapath=datapath, train=not test, transform=preprocess, download=True)
dataloader = torch.utils.data.DataLoader(dset, batch_size=args.batch_size, shuffle=False, drop_last=False, pin_memory=True, num_workers=16)
embeddings, label = compute_embedding(model, dataloader)
embeddings = embeddings.squeeze()
k = args.k or len(dset) // len(dset.classes)
nn_dists, neighbors = compute_neighbors(embeddings, k)
return embeddings, label, nn_dists, neighbors, len(dset.classes)
def compute_stats(outpath):
for test in True, False:
test_str = '-test' if test else ''
embeddings = torch.load(outpath / f'embeddings{test_str}.pt', map_location='cpu')
torch.save(embeddings.mean(dim=0), outpath / f'mean{test_str}.pt')
torch.save(embeddings.std(dim=0), outpath / f'std{test_str}.pt')
def main(args):
cudnn.benchmark = True
cudnn.deterministic = True
modelname = args.arch
outpath = get_outpath(modelname, args.dataset)
if args.stats_only:
compute_stats(outpath)
return
model, preprocess = load_model(args, head=False)
model = model.cuda()
model.eval()
outpath.mkdir(parents=True, exist_ok=True)
embs = {}
labels = {}
for test in True, False:
print('Computing', 'test' if test else 'train', 'dataset embedding')
embeddings, label, nn_dists, neighbors, num_classes = get_nn(args, preprocess, model, test)
embeddings, label, nn_dists, neighbors = embeddings.cpu(), label.cpu(), nn_dists.cpu(), neighbors.cpu()
embs[test] = embeddings
labels[test] = label
test_str = '-test' if test else ''
torch.save(embeddings, outpath / f'embeddings{test_str}.pt')
torch.save(label, outpath / f'label{test_str}.pt')
torch.save(neighbors, outpath / f'knn{test_str}.pt')
torch.save(nn_dists, outpath / f'knn_dists{test_str}.pt')
torch.save(embeddings.mean(dim=0), outpath / f'mean{test_str}.pt')
torch.save(embeddings.std(dim=0), outpath / f'std{test_str}.pt')
if not args.no_eval_knn:
print('Computing KNN accuracy')
top1, top5 = knn_classifier(
train_features=embs[False],
train_labels=labels[False],
test_features=embs[True],
test_labels=labels[True],
k=args.classifier_k,
T=args.temperature,
num_classes=num_classes
)
print(f'Top-1 accuracy: {top1}, Top-5 accuracy: {top5}')
with open(outpath / 'accuracy.json', 'w') as f:
json.dump({'top1': top1, 'top5': top5}, f)
# empty gpu memory
model = model.cpu()
del model
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument('--dataset', default='CIFAR100', choices=['CIFAR100', 'CIFAR10', "STL10", \
"CIFAR20", "IN1K", "IN50", 'IN100', "IN200", "IN1K"], type=str)
parser.add_argument('--arch', default='clip_ViT-B/32')
parser.add_argument('--outpath', type=Path, default=Path('data'))
parser.add_argument('--temperature', default=0.02, type=float,
help='Temperature used in the voting coefficient')
parser.add_argument('--classifier-k', default=20, type=int, help='Numbers of neighbors to use in the classifier')
parser.add_argument('-k', type=int, default=None, help='total NNs to compute. Default: num images / num classes')
parser.add_argument('--vit_image_size', type=int, default=224)
parser.add_argument('--batch_size', type=int, default=512)
parser.add_argument('--datapath', default='./data', type=str)
parser.add_argument('--no_eval_knn', action='store_true', help='Do not evaluate k-nn accuracy', default=False)
parser.add_argument('--stats_only', action='store_true',
help='Only compute the mean and std of the dataset for precomputed embeddings')
main(parser.parse_args())