-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbaseline_kmeans.py
138 lines (122 loc) · 5.74 KB
/
baseline_kmeans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import os
os.environ['OMP_NUM_THREADS'] = '50'
from utils import compute_metrics
from model_builders import load_embeds, available_models
from sklearn.cluster import KMeans
from tqdm import tqdm
import torch
import pandas as pd
from pathlib import Path
from argparse import ArgumentParser
import pickle
import model_builders
from gen_embeds import main as gen_embeds
def load_data(args):
dataset = args.dataset
arch = args.arch
try:
emb, targets_train = load_embeds(arch=arch, dataset=dataset, test=False, with_label=True)
emb_test, targets_test = load_embeds(arch=arch, dataset=dataset, test=True, with_label=True)
except:
print("Generating embeds for ", arch, dataset)
gen_embeds(args)
emb, targets_train = load_embeds(arch=arch, dataset=dataset, test=False, with_label=True)
emb_test, targets_test = load_embeds(arch=arch, dataset=dataset, test=True, with_label=True)
if args.normalize:
mean, std = emb.mean(dim=0), emb.std(dim=0)
emb = (emb - mean) / std
emb_test = (emb_test - mean) / std
return emb, targets_train, emb_test, targets_test
def kmeans_baseline(args, dir_path, num=1):
emb, targets_train, emb_test, targets_test = load_data(args)
rows = []
n_clusters = {
'CIFAR100': 100,
'CIFAR10': 10,
'STL10': 10,
'IN1K': 1000,
'IN100': 100,
'IN50': 50,
'IN200': 200,
}[args.dataset]
for _ in tqdm(range(num), leave=False):
arch_name = args.arch.replace("/", "_")
kmeans_save_path = dir_path / f"{arch_name}_kmeans.pkl"
if not os.path.exists(kmeans_save_path):
# fit based on train set
print('Fitting K-Means classifier..')
kmeans = KMeans(n_clusters=n_clusters, n_init=2, verbose=True).fit(emb)
# save kmeans model
print('Saving K-Means classifier..')
pickle.dump(kmeans, open(kmeans_save_path, "wb"))
else:
print("kmeans model already exists.")
kmeans = pickle.load(open(kmeans_save_path, "rb"))
preds = torch.tensor(kmeans.predict(emb_test))
data = compute_metrics(targets_test, preds)
data = dict(zip(["Accuracy", "NMI", "Adjusted NMI", "Adjusted Rand-Index"], data))
rows.append(data)
return pd.DataFrame(rows)
def true_label_means_baseline(args, num=1):
emb, targets_train, emb_test, targets_test = load_data(args)
rows = []
n_clusters = {
'CIFAR100': 100,
'CIFAR10': 10,
'STL10': 10,
'IN1K': 1000,
'IN100': 100,
'IN50': 50,
'IN200': 200,
}[args.dataset]
centers = torch.stack([emb[targets_train == i].mean(dim=0) for i in range(n_clusters)])
for _ in tqdm(range(num), leave=False):
preds = torch.cdist(centers, emb_test).argmin(dim=0)
data = compute_metrics(targets_test, preds)
data = dict(zip(["Accuracy", "NMI", "Adjusted NMI", "Adjusted Rand-Index"], data))
rows.append(data)
return pd.DataFrame(rows)
def agg_stats(df, arch):
name = pd.DataFrame({"arch":[arch]})
means = df.mean().round(2).to_frame().T
means.rename(columns = {'Accuracy':'Mean Acc', "NMI":"Mean NMI","Adjusted NMI":"Mean ANMI","Adjusted Rand-Index":"Mean ARI"}, inplace = True)
stds = df.std().round(2).to_frame().T
stds.rename(columns = {'Accuracy':'Std Acc', "NMI":"Std NMI","Adjusted NMI":"Std ANMI","Adjusted Rand-Index":"Std ARI"}, inplace = True)
return pd.concat([name, means, stds], axis=1)
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument('--dataset', choices=['CIFAR100', 'CIFAR10', "STL10", \
"CIFAR20", "IN1K", "IN50", 'IN100', "IN200", "IN1K"], type=str)
parser.add_argument('--archs', nargs='+', default=available_models())
parser.add_argument('--outpath', type=Path, default=Path('data'))
parser.add_argument('--batch_size', type=int, default=256)
parser.add_argument('--datapath', default='./data', type=str)
parser.add_argument('--normalize', action='store_true', default=False)
args = parser.parse_args()
file_prefix = 'kmeans_normalized' if args.normalize else 'kmeans'
dsets = [args.dataset]
list_df_kmeans = []
list_df_true_means = []
for arch in tqdm(args.archs):
arch_name = arch.replace("/", "_")
for dset in dsets:
dir_path = Path(f"experiments/clustering/kmeans_baseline/{dset}").expanduser().resolve()
dir_path.mkdir(parents=True, exist_ok=True)
args.arch = arch
args.dataset = dset
if os.path.isfile(dir_path / f"{file_prefix}_{arch_name}_{dset}.csv") and os.path.isfile(dir_path / f"labeled_centers_{arch_name}_{dset}.csv"):
list_df_kmeans.append(pd.read_csv(dir_path / f"{file_prefix}_{arch_name}_{dset}.csv"))
list_df_true_means.append(pd.read_csv(dir_path / f"{file_prefix}_{arch_name}_{dset}.csv"))
continue
res_kmeans = kmeans_baseline(args, dir_path, num=1)
agg_df = agg_stats(res_kmeans, arch)
list_df_kmeans.append(agg_df)
agg_df.to_csv(dir_path / f"{file_prefix}_{arch_name}_{dset}.csv")
agg_true_means = true_label_means_baseline(args, num=1)
agg_df_true_means = agg_stats(agg_true_means, arch)
list_df_true_means.append(agg_df_true_means)
agg_df_true_means.to_csv(dir_path / f"labeled_centers_{arch_name}_{dset}.csv")
df_all_km = pd.concat(list_df_kmeans, axis=0, ignore_index=True)
df_all_km.to_csv(dir_path / f"{file_prefix}_ALL.csv")
df_all_tm = pd.concat(list_df_true_means, axis=0, ignore_index=True )
df_all_tm.to_csv(dir_path / f"labeled_centers_ALL.csv")