-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathodometry.c
236 lines (179 loc) · 7.26 KB
/
odometry.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
#include "alloc.h"
#include "l2dm.h"
#include "se2.h"
#include "trig.h"
#include "v2dp.h"
#include <pf.h>
#include <assert.h>
#include <float.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <pcg_variants.h>
#define SQUARE(X) ((X) * (X))
#define RADIANS(X) ((X)*PI / 180.0)
#define BEARING_STDEV RADIANS(5.0)
#define RANGE_STDEV 25.0
struct double_pair {
double first;
double second;
};
static uint32_t rng(void *restrict arg);
static struct double_pair standard_normal_random(pcg32_random_t *restrict rng);
int main(int argc, const char *const argv[restrict argc]) {
if (argc < 2) {
fputs("error: missing argument NUM_TIMESTEPS\n", stderr);
return EXIT_FAILURE;
}
size_t num_timesteps;
if (sscanf(argv[1], "%zu", &num_timesteps) != 1) {
fprintf(stderr,
"error: couldn't parse '%s' as a positive integer (size_t)\n",
argv[1]);
return EXIT_FAILURE;
}
struct v2dp_state process_model_state = {
.sampling_period = 0.01,
.alpha = {SQUARE(0.00025), SQUARE(0.00005), SQUARE(0.0025),
SQUARE(0.0005), SQUARE(0.0025), SQUARE(0.0005)}};
struct l2dm_state measurement_model_state = {
.bearing_variance = SQUARE(BEARING_STDEV),
.range_variance = SQUARE(RANGE_STDEV),
.landmark_x = 0.0,
.landmark_y = 0.0};
struct pf_particle_filter filter = {
.process_model =
{
.model_fn = &v2dp_model,
.noise_covariance_fn = &v2dp_noise_covariance,
.action_length = (int)V2DP_ACTION_LENGTH,
.noise_length = (int)V2DP_NOISE_LENGTH,
.arg = &process_model_state,
},
.measurement_model =
{
.pdf = &l2dm_pdf,
.measurement_length = (int)L2DM_MEASUREMENT_LENGTH,
.arg = &measurement_model_state,
},
.state_length = (int)SE2_STATE_LENGTH,
.num_particles = 512,
};
pcg32_random_t pcg_rng = PCG32_INITIALIZER;
const struct pf_random_number_generator random_number_generator = {
.rng_fn = &rng,
.arg = &pcg_rng,
};
const struct pf_allocator system_allocator = {
.alloc = &allocator, .dealloc = &deallocator, .arg = NULL};
double true_state[SE2_STATE_LENGTH] = {180.0, 50.0, 0.0};
const double initial_belief_covariance[SE2_STATE_LENGTH][SE2_STATE_LENGTH] = {
{0.001, 0.0, 0.0},
{0.0, 0.001, 0.0},
{0.0, 0.0, 0.001},
};
enum pf_status result = pf_new(&filter, true_state, initial_belief_covariance,
&random_number_generator, &system_allocator);
if (result != PF_OK) {
fprintf(stderr, "error: pf_new() failed: %s (%d)\n",
pf_error_description(result).data, (int)result);
return EXIT_FAILURE;
}
int retc = EXIT_SUCCESS;
const double action[V2DP_ACTION_LENGTH] = {1.0, 1.0, 0.0};
double noise_variance[V2DP_NOISE_LENGTH];
v2dp_noise_variance(&process_model_state, action, noise_variance);
const double linear_velocity_stdev = sqrt(noise_variance[0]);
const double angular_velocity_stdev = sqrt(noise_variance[1]);
const double turn_velocity_stdev = sqrt(noise_variance[2]);
for (size_t i = 0; i < num_timesteps; ++i) {
const double t = process_model_state.sampling_period * (double)i;
const struct double_pair noise0 = standard_normal_random(&pcg_rng);
const struct double_pair noise1 = standard_normal_random(&pcg_rng);
const double noisy_action[V2DP_ACTION_LENGTH] = {
action[0] + noise0.first * linear_velocity_stdev,
action[1] + noise0.second * angular_velocity_stdev,
action[2] + noise1.first * turn_velocity_stdev};
double next_state[SE2_STATE_LENGTH];
v2dp_motion_model(&process_model_state, true_state, action, next_state);
memcpy(true_state, next_state, sizeof(true_state));
const struct double_pair noise2 = standard_normal_random(&pcg_rng);
const double landmark_x_offset =
measurement_model_state.landmark_x - true_state[0];
const double landmark_y_offset =
measurement_model_state.landmark_y - true_state[1];
const double landmark_bearing =
wrap_to_pi(atan2(landmark_y_offset, landmark_x_offset) - true_state[2]);
const double landmark_range = hypot(landmark_x_offset, landmark_y_offset);
const double measurement[L2DM_MEASUREMENT_LENGTH] = {
wrap_to_pi(landmark_bearing + noise1.second * BEARING_STDEV),
landmark_range + noise0.second * BEARING_STDEV};
result = pf_predict(&filter, action, &random_number_generator);
if (result != PF_OK) {
fprintf(stderr, "error: pf_predict() failed: %s (%d)\n",
pf_error_description(result).data, (int)result);
retc = EXIT_FAILURE;
goto cleanup;
}
result = pf_correct(&filter, measurement, &random_number_generator);
if (result != PF_OK) {
fprintf(stderr, "error: pf_correct() failed: %s (%d)\n",
pf_error_description(result).data, (int)result);
retc = EXIT_FAILURE;
goto cleanup;
}
struct se2_mean_covariance mean_covariance;
result = pf_particles_function(
&filter, &se2_compute_weighted_mean_and_covariance, &mean_covariance);
printf("- time: %f\n"
" true mean: [%f, %f, %f]\n"
" estimated mean: [%f, %f, %f]\n"
" estimated covariance:\n"
" - [%f, %f, %f]\n"
" - [%f, %f, %f]\n"
" - [%f, %f, %f]\n",
t, true_state[0], true_state[1], true_state[2],
mean_covariance.mean[0], mean_covariance.mean[1],
mean_covariance.mean[2], mean_covariance.covariance[0][0],
mean_covariance.covariance[0][1], mean_covariance.covariance[0][2],
mean_covariance.covariance[1][0], mean_covariance.covariance[1][1],
mean_covariance.covariance[1][2], mean_covariance.covariance[2][0],
mean_covariance.covariance[2][1], mean_covariance.covariance[2][2]);
}
cleanup:
result = pf_drop(&filter, &system_allocator);
if (result != PF_OK) {
fprintf(stderr, "error: pf_drop() failed: %s (%d)\n",
pf_error_description(result).data, (int)result);
retc = EXIT_FAILURE;
}
return retc;
}
static uint32_t rng(void *restrict arg) {
assert(arg);
return pcg32_random_r((pcg32_random_t *)arg);
}
static double random_in_01(pcg32_random_t *restrict rng);
static struct double_pair standard_normal_random(pcg32_random_t *restrict rng) {
assert(rng);
const double u1 = random_in_01(rng);
const double u2 = random_in_01(rng);
const double magnitude = sqrt(-2.0 * log(1.0 - u1));
const double angle = 2.0 * PI * u2;
const double z0 = magnitude * cos(angle);
const double z1 = magnitude * sin(angle);
return (struct double_pair){.first = z0, .second = z1};
}
static double random_in_01(pcg32_random_t *restrict rng) {
static_assert(FLT_RADIX == 2,
"double must be a binary floating point number");
static_assert(DBL_MANT_DIG <= 64,
"double must have 64 or fewer mantissa digits!");
assert(rng);
const uint32_t upper_bits = pcg32_random_r(rng);
const uint32_t lower_bits = pcg32_random_r(rng);
const uint64_t bits = ((uint64_t)upper_bits << 32) | (uint64_t)lower_bits;
const uint64_t mantissa = bits >> (64 - DBL_MANT_DIG);
return (double)mantissa / (double)((uint64_t)1 << DBL_MANT_DIG);
}