-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_nn_train.py
40 lines (34 loc) · 1.08 KB
/
run_nn_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import numpy as np
# import pandas as pd
# import matplotlib.pyplot as plt
# import seaborn as sns
# import json, os, pickle
# from collections import defaultdict
from joblib import Parallel, delayed
# from tqdm import tqdm
# import itertools
# import wandb
from nnn import fileio
from nnn import train_nn as tnn
### MODIFY HERE ###
fixed_pclass = ['hairpin_size', 'interior_size', 'bulge_size', 'hairpin_triloop', 'hairpin_tetraloop', 'terminal_mismatch', 'stack']
config = dict(
use_train_set_ratio = 0.1,
fit_method = 'svd',
feature_method = 'get_feature_list',
fit_intercept=False,
symmetry=False,
sep_base_stack=True,
fix_some_coef=True,
fixed_pclass = fixed_pclass,
test_mode = 'val', # {'val', 'test'}
use_model_from = 'lr_dict', # {'lr_dict', 'json'}
)
myrange = [.1, .2, .75, 1.0]
tags = ['nupack test']
### END MODIFY ###
def pipeline_fun(config, ratio):
config.update(dict(use_train_set_ratio=ratio))
tnn.model_pipeline(config, tags=tags)
n = len(myrange)
Parallel(n_jobs=n)(delayed(pipeline_fun)(config, ratio) for ratio in myrange)