-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathscRNA_scATAC_Integration_01_Align_scATAC_scRNA.R
217 lines (175 loc) · 6.88 KB
/
scRNA_scATAC_Integration_01_Align_scATAC_scRNA.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
#Clustering and scATAC-seq UMAP for Hematopoiesis data
#06/02/19
#Cite Granja*, Klemm*, Mcginnis* et al.
#A single cell framework for multi-omic analysis of disease identifies
#malignant regulatory signatures in mixed phenotype acute leukemia (2019)
#Created by Jeffrey Granja
library(Seurat)
library(Matrix)
library(GenomicRanges)
library(magrittr)
library(SummarizedExperiment)
library(Rcpp)
set.seed(1)
####################################################
#Functions
####################################################
#Nearest Neighbor differential
findNN <- function(query, reference, method = "euclidean"){
findClosest <- function(x, m, method = "euclidean"){
if(method=="euclidean"){
which.min(sqrt(colSums((t(m) - x) * (t(m) - x))))
}else if(method=="pearson"){
which.max(cor(t(m),x,method = method)[,1])
}else if(method=="spearman"){
which.max(cor(t(m),x,method = method)[,1])
}
}
pb <- txtProgressBar(min=0,max=100,initial=0,style=3)
mat <- data.frame(matrix(ncol = 4, nrow = nrow(query)))
colnames(mat) <- c("x", "i", "y", "j")
for(i in seq_len(nrow(query))){
setTxtProgressBar(pb,round(i*100/nrow(query),0))
j <- findClosest(query[i,], reference, method)
mat[i,] <- c(x = rownames(query)[i], i = i, y = rownames(reference)[j], j = j)
}
return(mat)
}
sourceCpp(code='
#include <Rcpp.h>
using namespace Rcpp;
using namespace std;
// Adapted from https://github.com/AEBilgrau/correlateR/blob/master/src/auxiliary_functions.cpp
// [[Rcpp::export]]
Rcpp::NumericVector rowCorCpp(IntegerVector idxX, IntegerVector idxY, Rcpp::NumericMatrix X, Rcpp::NumericMatrix Y) {
if(X.ncol() != Y.ncol()){
stop("Columns of Matrix X and Y must be equal length!");
}
if(max(idxX) > X.nrow()){
stop("Idx X greater than nrow of Matrix X");
}
if(max(idxY) > Y.nrow()){
stop("Idx Y greater than nrow of Matrix Y");
}
// Transpose Matrices
X = transpose(X);
Y = transpose(Y);
const int nx = X.ncol();
const int ny = Y.ncol();
// Centering the matrices
for (int j = 0; j < nx; ++j) {
X(Rcpp::_, j) = X(Rcpp::_, j) - Rcpp::mean(X(Rcpp::_, j));
}
for (int j = 0; j < ny; ++j) {
Y(Rcpp::_, j) = Y(Rcpp::_, j) - Rcpp::mean(Y(Rcpp::_, j));
}
// Compute 1 over the sample standard deviation
Rcpp::NumericVector inv_sqrt_ss_X(nx);
for (int i = 0; i < nx; ++i) {
inv_sqrt_ss_X(i) = 1/sqrt(Rcpp::sum( X(Rcpp::_, i) * X(Rcpp::_, i) ));
}
Rcpp::NumericVector inv_sqrt_ss_Y(ny);
for (int i = 0; i < ny; ++i) {
inv_sqrt_ss_Y(i) = 1/sqrt(Rcpp::sum( Y(Rcpp::_, i) * Y(Rcpp::_, i) ));
}
//Calculate Correlations
const int n = idxX.size();
Rcpp::NumericVector cor(n);
for(int k = 0; k < n; k++){
cor[k] = Rcpp::sum( X(Rcpp::_, idxX[k] - 1) * Y(Rcpp::_, idxY[k] - 1) ) * inv_sqrt_ss_X(idxX[k] - 1) * inv_sqrt_ss_Y(idxY[k] - 1);
}
return(cor);
}'
)
####################################################
#Input Data
####################################################
#Read in Summarized Experiment
#Please Note Code here has been modified to work with finalized summarized experiment
#Prep RNA Matrix from Summarized Experiment
se <- readRDS(opt$input_RNA)
matRNA <- assay(se)
#Prep Gene Score Matrix from Summarized Experiment
seGS <- readRDS(opt$input_GS)
matGS <- assay(seGS)
#Parameters
nCCA <- 20
nVarGenes <- 2500
selectMethod <- "all"
#Gene Universe
geneUniverse <- intersect(rownames(matGS),rownames(matRNA))
#Remove Mito RNA
geneUniverse <- geneUniverse[geneUniverse %ni% grep("^MT", c(rownames(seGS),rownames(se)), value = TRUE)]
#Subset By Gene Universe
matRNA <- matRNA[geneUniverse, ,drop = FALSE]
matGS <- matGS[geneUniverse, ,drop = FALSE]
#Create RNA Seurat
objRNA <- CreateSeuratObject(raw.data = matRNA, project = "RNA")
objRNA <- NormalizeData(object = objRNA)
objRNA <- ScaleData(object = objRNA)
objRNA <- FindVariableGenes(object = objRNA, do.plot = FALSE, selection.method = "dispersion", top.genes = as.integer(nVarGenes))
[email protected][, "protocol"] <- "RNA"
#Create GS Seurat
objGS <- CreateSeuratObject(raw.data = matGS, project = "ATAC")
objGS <- NormalizeData(object = objGS)
objGS <- ScaleData(object = objGS)
objGS <- FindVariableGenes(object = objGS, do.plot = FALSE, selection.method = "dispersion", top.genes = as.integer(nVarGenes))
[email protected][, "protocol"] <- "ATAC"
#Intersect Variable Genes
if(tolower(selectMethod) == "genescores"){
varGenes <- [email protected]
}else if(tolower(selectMethod) == "rna"){
varGenes <- [email protected]
}else if(tolower(selectMethod) == "intersect"){
varGenes <- intersect([email protected], [email protected])
}else if(tolower(selectMethod) == "all"){
varGenes <- unique(c([email protected], [email protected]))
}
#Run CCA Seurat v2.3.4
CCA <- RunCCA(object = objRNA, object2 = objGS, genes.use = varGenes, num.cc = as.integer(nCCA))
#Variance Expectation Ration Seurat v2.3.4
CCA <- CalcVarExpRatio(object = CCA, reduction.type = "pca", grouping.var = "protocol", dims.use = seq_len(as.integer(nCCA)))
#Filter Seurat v2.3.4
CCA <- SubsetData(object = CCA, subset.name = "var.ratio.pca", accept.low = 0.5)
#Align Subspace Seurat v2.3.4
CCA <- AlignSubspace(object = CCA, reduction.type = "cca", grouping.var = "protocol", dims.align = seq_len(as.integer(nCCA)))
saveRDS(CCA, "results/Save-CCA-Alignment-scATAC-scRNA.rds")
#Get CCA Matrix
alignedCCA <- GetCellEmbeddings(CCA, reduction.type = "cca.aligned")
#KNN Search
#Alternatively for speed FNN::getknnx(query, reference, k = 1)
#We just used a simple function
matchedCells <- findNN(
query = alignedCCA[[email protected]$protocol=="ATAC",],
reference = alignedCCA[[email protected]$protocol=="RNA",],
method = "euclidean")
matchedCells$corCCA <- rowCorCpp(
match(matchedCells$x, colnames(CCA@data)),
match(matchedCells$y, colnames(CCA@data)),
alignedCCA, alignedCCA)
matchedCells$corVarRNA <- rowCorCpp(
match(matchedCells$x, colnames(CCA@data)),
match(matchedCells$y, colnames(CCA@data)),
t(as.matrix(CCA@data[[email protected],])),
t(as.matrix(CCA@data[[email protected],])))
matchx <- match(matchedCells$x, colnames(CCA@data))
matchy <- match(matchedCells$y, colnames(CCA@data))
mat <- as.matrix(CCA@data[[email protected],])
#-------------------------------------------------------
#UMAP
#-------------------------------------------------------
set.seed(1)
umap <- uwot::umap(
alignedCCA,
n_neighbors = 50,
min_dist = 0.5,
metric = "euclidean",
n_threads = 5,
verbose = TRUE,
ret_model = FALSE)
#Plot DF
plotDF <- data.frame(umap)
rownames(plotDF) <- rownames(alignedCCA)
plotDF[rownames([email protected][rownames(plotDF),]),"protocol"] <- [email protected][rownames(plotDF),]$protocol
plotDF <- plotDF[sample(seq_len(nrow(plotDF)), nrow(plotDF)),, drop = FALSE]
saveRDS(list(plotDF = plotDF, matchedCells = matchedCells), "results/Save-CCA-KNN-UMAP.rds")