-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfind-roi.py
206 lines (188 loc) · 6.97 KB
/
find-roi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# this script takes a folder with images
# searches for the most interesting/distinctive regions in the images
# and draws the regions on the images
import argparse, os, sys, glob, cv2, numpy as np
# add the root folder of the project to the path
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from Utils.visualize import withText, withPadding
def isImage(filename):
filename = os.path.basename(filename).lower()
if not filename.endswith(('.png', '.jpg')): return False
return True
def regionsFor(H, W, regionSize):
# create a grid of regions
regions = []
N = 8
fractions = np.linspace(0, regionSize, N + 1, dtype=np.int32)[:-1]
x, y = np.meshgrid(fractions, fractions)
shifts = np.stack([y, x], axis=-1).reshape(-1, 2)
shifts = map(tuple, shifts)
shifts = list(set(shifts))
for shiftY, shiftX in shifts:
for y in range(shiftY, H, regionSize):
for x in range(shiftX, W, regionSize):
if H < y + regionSize: continue
if W < x + regionSize: continue
regions.append((y, x, y + regionSize, x + regionSize))
continue
continue
return list(set(regions))
def calculateStatistics(images, regions):
assert 1 < len(images), 'Need at least 2 images'
H, W = images[0].shape[:2]
candidates = []
for region in regions:
y1, x1, y2, x2 = region
# verify that the region is inside the image
assert 0 <= y1 < y2 <= H, f'{y1} {y2} {H}'
assert 0 <= x1 < x2 <= W, f'{x1} {x2} {W}'
# extract the region from each image
regionImages = [image[y1:y2, x1:x2] for image in images]
globalStd = max([np.std(x) for x in regionImages])
# (H, W, C) * N -> (H, W, C, N)
regionImages = np.stack(regionImages, axis=-1)
assert regionImages.shape[-1] == len(images), 'Wrong number of images'
localStd = np.std(regionImages, axis=-1).max(axis=-1).mean()
differences = globalStd + localStd
assert isinstance(differences, float), 'Expected a scalar'
candidates.append((differences, region))
continue
return candidates
def region2points(region):
y1, x1, y2, x2 = region
assert x1 < x2, 'Wrong region'
assert y1 < y2, 'Wrong region'
A = (x1, y1)
B = (x2, y1)
C = (x2, y2)
D = (x1, y2)
return A, B, C, D
def isOverlapping(region1, region2):
y1, x1, y2, x2 = region1
assert x1 < x2, 'Wrong region'
assert y1 < y2, 'Wrong region'
corners = region2points(region1)
for point in region2points(region2):
x, y = point
if (x1 <= x <= x2) and (y1 <= y <= y2) and not(point in corners):
return True
continue
return False
def hasCommonEdge(region1, region2):
pts1 = region2points(region1)
pts2 = region2points(region2)
commonPointsN = sum([int(pt in pts2) for pt in pts1])
return commonPointsN == 2
def drawRegions(images, regions, mergeCommonEdges=True):
images = images if isinstance(images, list) else [images]
if mergeCommonEdges:
wasMerged = True
while wasMerged:
wasMerged = False
for i, region1 in enumerate(regions):
for j, region2 in enumerate(regions):
if i == j: continue
if hasCommonEdge(region1, region2):
# replace the regions with a merged region
y1 = min(region1[0], region2[0])
x1 = min(region1[1], region2[1])
y2 = max(region1[2], region2[2])
x2 = max(region1[3], region2[3])
regions[i] = (y1, x1, y2, x2)
regions.pop(j)
wasMerged = True
break
continue
if wasMerged: break
continue
continue
# draw the regions on each subimage
for region in regions:
y1, x1, y2, x2 = region
for image in images:
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
continue
continue
return
def findBestRegions(regions, N):
candidates = sorted(regions, key=lambda x: x[0], reverse=True)
candidatesBest = []
while len(candidatesBest) < N:
if not candidates: break
bestCandidate = candidates.pop(0)
_, bestRegion = bestCandidate
# check if the best candidate is not overlapping with the previous candidates
overlapping = any(
isOverlapping(bestRegion, candidateRegion)
for _, candidateRegion in candidatesBest
)
if not overlapping:
candidatesBest.append(bestCandidate)
continue
return candidatesBest[:N]
def processImages(images, regionSize, N):
mainImage = images[0]
H, W = mainImage.shape[:2]
regions = regionsFor(H, W, regionSize)
candidates = findBestRegions(
regions=calculateStatistics(images, regions),
N=N
)
regions = [region for _, region in candidates]
return regions
def main(args):
folder = args.folder
# find all images in the folder
files = [f for f in glob.glob(os.path.join(folder, '*.*')) if isImage(f)]
files.sort()
# load images
images = [cv2.imread(file) for file in files]
regions = processImages(images, args.regionSize, args.N)
# create a grid of regions
perSource = [[] for _ in range(len(images))]
targetSize = args.targetSize or args.regionSize
for region in regions:
y1, x1, y2, x2 = region
subimages = [image[y1:y2, x1:x2] for image in images]
subimages = [cv2.resize(image, (targetSize, targetSize)) for image in subimages]
if args.showSubregions:
subregions = processImages(subimages, args.subRegionSize, args.subRegionsN or args.N)
drawRegions(subimages, subregions)
pass
subimages = [withPadding(image, 5) for image in subimages]
for i, image in enumerate(subimages):
perSource[i].append(image)
continue
continue
perSource = [np.concatenate(images, axis=0) for images in perSource]
# add captions, basename of the file without extension
captions = [os.path.basename(file) for file in files]
# remove the extension
captions = [os.path.splitext(caption)[0] for caption in captions]
# add the caption to each image
perSource = [
withText(image, caption, scale=0.5)
for image, caption in zip(perSource, captions)
]
# create a grid of images
regionsImages = np.concatenate(perSource, axis=1)
if args.output:
cv2.imwrite(args.output, regionsImages)
else:
cv2.imshow('regions', regionsImages)
cv2.waitKey(0)
return
if '__main__' == __name__:
parser = argparse.ArgumentParser(description='Create a grid of most interesting regions')
parser.add_argument('--folder', help='folder with images')
parser.add_argument('--regionSize', type=int, help='size of the region', default=384)
parser.add_argument('--targetSize', type=int, help='size of the target region', default=256)
parser.add_argument('--N', type=int, help='number of global regions', default=4)
parser.add_argument('--hideSubregions', action='store_true', help='hide subregions')
parser.add_argument('--subRegionsN', type=int, help='number of subregions', default=6)
parser.add_argument('--subRegionSize', type=int, help='size of the subregion', default=int(256/6))
parser.add_argument('--output', help='output file')
args = parser.parse_args()
args.showSubregions = not args.hideSubregions
main(args)
pass