-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_dist.py
277 lines (211 loc) · 11 KB
/
train_dist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
#only experiment on graph classification tasks
import torch
from model import GCN, GIN,GraphSAGE,TransformerNet
from GMT_model.nets import GraphMultisetTransformer, GraphMultisetTransformer_for_OGB
from torch_geometric.loader import DataLoader
import os
from tqdm import tqdm
import torch.nn as nn
from utils import EarlyStopper
import wandb
import torch.nn.functional as F
import numpy as np
from utils_dist import *
import torch._dynamo
torch._dynamo.config.suppress_errors = True
TUData=["PROTEINS","IMDB-BINARY","IMDB-MULTI","COLLAB","NCI1","NCI109","COIL-RAG", "DD"]
OGB_Data=["ogbg-molhiv"]
SNAP_Data = ["reddit_threads"]
class RankNetLoss(nn.Module):
"""
RankNet loss implemented as a PyTorch nn.Module, excluding self-comparisons by removing diagonal elements.
"""
def __init__(self):
super(RankNetLoss, self).__init__()
@torch.compile
def forward(self, previous_layer, current_layer):
"""
Parameters:
- previous_layer: Tensor of labels indicating the preferred item (1 if first item is preferred, 0 otherwise).
- current_layer: Tensor of item features or similarities.
Returns:
- RankNet loss for the input batch, excluding self-comparisons.
"""
n = current_layer.size(0)
mask = ~torch.eye(n, dtype=torch.bool, device=current_layer.device)
pairwise_diffs = current_layer.unsqueeze(1) - current_layer.unsqueeze(0)
pairwise_diffs = pairwise_diffs * mask.unsqueeze(2).float()
#pairwise_diff
sigmoid_diffs = torch.sigmoid(pairwise_diffs)
label_matrix = previous_layer.unsqueeze(1) - previous_layer.unsqueeze(0)
label_matrix = label_matrix.sign()
label_matrix = (1 + label_matrix) / 2
label_matrix = label_matrix * mask.float()
losses = -label_matrix * torch.log(sigmoid_diffs + 1e-15) - (1 - label_matrix) * torch.log(1 - sigmoid_diffs + 1e-15)
losses = torch.where(torch.isnan(losses) | ~mask, torch.zeros_like(losses), losses)
mean_loss = losses.sum() / (mask.sum()*n)
return mean_loss
#proportion of training set
train_splits=0.8
validate_splits=0.1
criterion = torch.nn.CrossEntropyLoss()
save_path="./model/"
def get_model(model_name, dataset, device, config, loss_module="RankNetLoss"):
dropout_ratio=config['dropout']
hidden_size=config['hidden_size']
num_layers=config['num_layers']
reg_term=config['reg_term']
num_classes = dataset.num_classes if dataset.name != 'ogbg-ppa' else len(torch.unique(dataset.y))
if loss_module == "RankNetLoss":
loss_func=RankNetLoss().to(device)
print("Using RankNetLoss")
if model_name == 'GCN':
model = GCN(dataset.num_features,hidden_size,num_classes,num_layers=num_layers,dropout=dropout_ratio,medium=True)
elif model_name == 'GraphSAGE':
model = GraphSAGE(dataset.num_features,hidden_size,num_classes,num_layers=num_layers,dropout=dropout_ratio,medium=True)
elif model_name == 'GIN':
model = GIN(dataset.num_features,hidden_size,num_classes,num_layers=num_layers,dropout=dropout_ratio,medium=True)
elif model_name == 'GTransformer':
model = TransformerNet(dataset.num_features,hidden_size,num_classes,num_layers=num_layers,dropout=dropout_ratio,medium=True)
elif model_name=='GMT':
if (dataset.name in TUData) or (dataset.name in SNAP_Data):
model = GraphMultisetTransformer(dataset.num_features,hidden_size,num_classes,config['heads'],avg_num_nodes=np.ceil([np.mean([data.num_nodes for data in dataset])]),medium=True)
elif dataset.name in OGB_Data:
model = GraphMultisetTransformer_for_OGB(dataset.num_features,hidden_size,num_classes,num_heads=config['heads'],avg_num_nodes=np.ceil([np.mean([data.num_nodes for data in dataset])]), edge_attr_dim=7, medium=True)
else:
raise ValueError("This Model is not implemented")
else:
raise ValueError("This Model is not implemented")
model_decorator(model, reg_term, loss_func)
print(model_name, " Training...")
return model
def train(model, data_loader, optimizer, device, task_type):
model = model.to(device)
model.train()
print('Training...')
for step, data in tqdm(enumerate(data_loader), total=len(data_loader)):
data = data.to(device)
if data.x.shape[0] == 1 or data.batch[-1] == 0:
continue # Skip batches that are too small or have incorrect batching
optimizer.zero_grad()
loss = 0
out, pooled_outputs = model(data)
sub_loss ,_ = model.loss(out, data.y, pooled_outputs=pooled_outputs, task_type=task_type)
loss = loss + sub_loss
loss.backward()
optimizer.step()
def test(model, loader, device, evaluator=None, task_type=None):
model.eval()
correct = 0
total_loss=0
total_samples = 0
total_dist_loss=0
with torch.no_grad():
pred_list = []
y_list = []
print("Testing...")
for data in tqdm(loader, total=len(loader)):
data = data.to(device)
out, pooled_outputs = model(data)
test_loss, dist_loss = model.loss(out, data.y, pooled_outputs, task_type)
total_dist_loss += dist_loss.item()
total_loss += test_loss.item()
if evaluator is not None:
# for ogb data
pred_list.append(out)
else:
pred_list.append(out.argmax(dim=1))
y_list.append(data.y)
# correct += int((pred == data.y).sum())
total_samples += data.y.size(0) # Update total samples for accuracy calculation
pred_list = torch.cat(pred_list)
y_list = torch.cat(y_list)
if evaluator is not None:
if y_list.size() != pred_list.size():
pred_list = torch.argmax(pred_list, dim=1).unsqueeze(0).T
test_loss = evaluator.eval({"y_true": y_list, "y_pred": pred_list})
correct = test_loss[list(test_loss.keys())[0]]
else:
correct = torch.sum(pred_list==y_list).item()
if evaluator is None:
return correct / total_samples, total_loss / len(loader), total_dist_loss / len(loader)
else:
return correct, total_loss / len(loader), total_dist_loss / len(loader)
def train_model_dist(model_name,dataset,dataloaders,config,patience=100,
min_delta=0.005,device=7,wandb_record=True,save_model=False,
seed=12345, fromstore=False, evaluator=None,task_type=None, repeat_time=0
):
epoch = config['epochs']
device = torch.device("cuda:" + str(device)) if torch.cuda.is_available() else torch.device("cpu")
print("Model: ",model_name, "Dataset: ",dataset.name )
print("Train on device:",device)
if save_model:
save_path='./model&dataset/'+model_name+'/'
#save_path='./cka_model/'+model_name+'/'
if os.path.exists(save_path)==False:
os.mkdir(save_path)
if wandb_record:
saved_folder_path=save_path+dataset.name+'/'
os.mkdir(saved_folder_path) if os.path.exists(saved_folder_path)==False else None
model_saved_path=saved_folder_path+str(wandb.run.name)+".pkl"
else:
model_saved_path=save_path+dataset.name+f"_distrecord_{repeat_time}.pkl"
else:
model_saved_path=None
[train_loader, valid_loader, test_loader] = dataloaders
# model = get_model(model_name,dataset,dropout,hidden_size,num_layers=num_layers,device=device,reg_term=loss_reg_term)
model = get_model(model_name,dataset,device=device,config=config)
# model.reset_parameters()
optimizer = torch.optim.AdamW(model.parameters(), lr=config['learning_rate'], weight_decay=config['weight_decay'],betas=(0.9, 0.999))
early_stopper = EarlyStopper(patience=patience, min_delta=min_delta,file_path=model_saved_path,saved=save_model)
for epoch in range(0, epoch):
print(f'{model_name}, {dataset.name}')
train(model,train_loader,optimizer,device,task_type)
# train_acc, train_loss, train_dist_loss = test(model,train_loader,device,evaluator,task_type)
train_acc=0
train_loss=0
train_dist_loss=0
test_acc, _ ,test_dist_loss= test(model,test_loader,device,evaluator,task_type)
val_acc, validation_loss, valid_dist_loss= test(model,valid_loader,device,evaluator,task_type)
if not validation_loss==validation_loss:
break
if wandb_record:
dict_to_log={"train_acc": train_acc,"train_loss": train_loss, "valid_loss": validation_loss,"test_acc": test_acc,"val_acc": val_acc,
"train_dist_loss":train_dist_loss,"test_dist_loss":test_dist_loss,}
wandb.log(dict_to_log)
# if epoch % 10 == 0:
# save_path="./dist_perserve/"+str(epoch)+".pt"
# torch.save(model,save_path)
if early_stopper.early_stop(val_acc,epoch, test_acc, model):
break
print(f'Epoch: {epoch:03d}, Train Acc: {train_acc:.4f}, Train Loss:{train_loss:.4f}, Test Acc: {test_acc:.4f}', "Test_dist_loss: ",test_dist_loss,"Validation Loss: ",validation_loss,"acc_early_stop: ",early_stopper.test_acc_record)
print("Early stopping at Epoch: %d, Test Acc: %f"%(early_stopper.epoch_counter, early_stopper.test_acc_record))
with open(f"record/{model_name}_{config['reg_term']}.txt", 'a+') as file:
file.write(f"{early_stopper.test_acc_record}\n")
#torch.save(model,model_saved_path)
if wandb_record:
wandb.log({"test_acc_of_early_stop": early_stopper.test_acc_record})
return early_stopper.test_acc_record
def data_loader(dataset_name, dataset, batch_size):
if (dataset_name in TUData) or (dataset_name in SNAP_Data):
#proportion of training set
train_splits=0.8
validate_splits=0.1
data_train_index=int(len(dataset)*train_splits)
data_test_index=int(len(dataset)*(train_splits+validate_splits))
train_dataset =dataset[:data_train_index]
test_dataset = dataset[data_train_index:data_test_index]
valid_dataset = dataset[data_test_index:]
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
valid_loader= DataLoader(valid_dataset, batch_size=batch_size, shuffle=False)
return [train_loader, valid_loader, test_loader]
elif dataset_name in OGB_Data:
split_idx = dataset.get_idx_split()
train_loader = DataLoader(dataset[split_idx["train"]], batch_size=batch_size, shuffle=True)
valid_loader = DataLoader(dataset[split_idx["valid"]], batch_size=batch_size, shuffle=False)
test_loader = DataLoader(dataset[split_idx["test"]], batch_size=batch_size, shuffle=False)
return [train_loader, valid_loader, test_loader]
else:
print("Error")
raise Exception("Error in load_dataset")