-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_criteo.py
205 lines (160 loc) · 6.88 KB
/
test_criteo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import pandas as pd
import tensorflow as tf
import math
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import tensorflow_addons as tfa
import matplotlib.pyplot as plt
from census_config import *
import os
file_path = '/media/psdz/hdd/Download/Criteo/'
train_path = file_path + 'train.txt'
numeric_feat = ['I' + str(i) for i in range(1, 14)]
categorical_feat = ['C' + str(i) for i in range(1, 27)]
total_feat = numeric_feat + categorical_feat
csv_header = ['label'] + numeric_feat + categorical_feat
data = pd.read_csv(train_path, sep='\t', names=csv_header)
sample_data = data.sample(frac=0.01, random_state=2022)
train = sample_data[: int(len(sample_data) * 0.8)].reset_index(drop=True)
vali = sample_data[int(len(sample_data) * 0.8): ].reset_index(drop=True)
# fill missing values
for col in numeric_feat:
avg = train[col].mean()
train[col] = train[col].fillna(avg)
train[col] = train[col].apply(lambda x: round(x, 6))
vali[col] = vali[col].fillna(avg)
vali[col] = vali[col].apply(lambda x: round(x, 6))
for col in categorical_feat:
train[col] = train[col].fillna('na')
vali[col] = vali[col].fillna('na')
train.to_csv(file_path + 'train.csv', index=False)
vali.to_csv(file_path + 'vali.csv', index=False)
def build_categorical_vocab(df):
cate_feat_vocab, cate_feat_vocab_size = {}, {}
for col in categorical_feat:
cate_feat_vocab[col] = sorted(list(df[col].unique())),
cate_feat_vocab_size[col] = len(sorted(list(df[col].unique()))),
return cate_feat_vocab, cate_feat_vocab_size
cate_feat_vocab, cate_feat_vocab_size = build_categorical_vocab(train)
cfg = {
# feat config
'numeric_feat' : numeric_feat,
'categorical_feat' : categorical_feat,
'total_feat' : total_feat,
'csv_header' : csv_header,
'cate_feat_vocab' : cate_feat_vocab,
'cate_feat_vocab_size': cate_feat_vocab_size,
'target_col' : 'label',
# model config
'embedding_dims' : 16,
'num_heads' : 4,
'mlp_hidden_units_factors' : [2, 1],
'num_mlp_blocks' : 2,
# training process config
'learning_rate' : 0.001,
'weight_decay' : 0.0001,
'dropout_rate' : 0.2,
'learning_rate' : 0.001,
'batch_size' : 256,
'num_epoch' : 15,
}
# target_label_lookup = layers.StringLookup(
# vocabulary=TARGET_LABELS,
# mask_token=None,
# num_oov_indices=0
# )
def get_tf_dataset_from_csv(csv_file_path, cfg, batch_size=128, shuffle=False):
def process(features):
feedids_string = features['feedids']
seq_feedids = tf.strings.split(feedids_string, '|').to_tensor()
features['feedids'] = seq_feedids[:, :]
labels = features[label_name]
return features, labels
def prepare_example(features, target):
target_index = target_label_lookup(target)
return features, target_index
def prepare_example_update(features, target):
target = features['label']
features = features.pop(['label'])
return features, target_index
dataset = tf.data.experimental.make_csv_dataset(
csv_file_path,
batch_size=batch_size,
column_names=cfg['csv_header'],
label_name=cfg['target_col'],
num_epochs=1,
# header=False,
header=True,
shuffle=shuffle,
).map(prepare_example_update, num_parallel_calls=tf.data.AUTOTUNE, deterministic=False)
return dataset.cache()
def create_model_inputs(cfg):
inputs = {}
for feat in cfg['total_feat']:
if feat in cfg['numeric_feat']:
inputs[feat] = layers.Input(name=feat, shape=(), dtype=tf.float32)
if feat in cfg['categorical_feat']:
inputs[feat] = layers.Input(name=feat, shape=(), dtype=tf.string)
return inputs
def encode_inputs(inputs, embedding_dims, cfg):
encoded_categorical_feature_list, numerical_feature_list = [], []
for feat in inputs:
if feat in cfg['categorical_feat']:
vocabulary = cfg['cate_feat_vocab'][feat]
lookup = layers.StringLookup(vocabulary=vocabulary, mask_token=None, num_oov_indices=0, output_mode="int")
encoded_feature = lookup(inputs[feat])
embedding = layers.Embedding(input_dim=len(vocabulary), output_dim=embedding_dims)
encoded_categorical_feature = embedding(encoded_feature)
encoded_categorical_feature_list.append(encoded_categorical_feature)
if feat in cfg['numerical_feat']:
numerical_feature = tf.expand_dims(inputs[feat], -1)
numerical_feature_list.append(numerical_feature)
return encoded_categorical_feature_list, numerical_feature_list
def create_mlp(hidden_units, dropout_rate, activation, normalization_layer, name=None):
mlp_layers = []
for units in hidden_units:
mlp_layers.append(normalization_layer),
mlp_layers.append(layers.Dense(units, activation=activation))
mlp_layers.append(layers.Dropout(dropout_rate))
return keras.Sequential(mlp_layers, name=name)
inputs = create_model_inputs(cfg)
encoded_categorical_feature_list, numerical_feature_list = encode_inputs(inputs, cfg['embedding_dims'])
features = layers.concatenate(encoded_categorical_feature_list + numerical_feature_list)
feedforward_units = [features.shape[-1]]
for layer_idx in range(cfg['num_mlp_blocks']):
features = create_mlp(
hidden_units=feedforward_units,
dropout_rate=cfg['dropout_rate'],
activation=keras.activations.gelu,
normalization_layer=layers.LayerNormalization(epsilon=1e-6),
name=f"feedforward_{layer_idx}",
)(features)
mlp_hidden_units = [factor * features.shape[-1] for factor in mlp_hidden_units_factors]
features = create_mlp(
hidden_units=mlp_hidden_units,
dropout_rate=dropout_rate,
activation=keras.activations.selu,
normalization_layer=layers.BatchNormalization(),
name="MLP",
)(features)
outputs = layers.Dense(units=1, activation="sigmoid", name="sigmoid")(features)
model = keras.Model(inputs=inputs, outputs=outputs)
def run_experiment(model, train_data_file, test_data_file, num_epochs, learning_rate, weight_decay, batch_size,):
optimizer = tfa.optimizers.AdamW(learning_rate=learning_rate, weight_decay=weight_decay)
model.compile(
optimizer=optimizer,
loss=keras.losses.BinaryCrossentropy(),
metrics=[keras.metrics.BinaryAccuracy(name="accuracy")],
)
train_dataset = get_tf_dataset_from_csv(train_data_file, batch_size, shuffle=True)
validation_dataset = get_tf_dataset_from_csv(test_data_file, batch_size)
history = model.fit(
train_dataset,
epochs=num_epochs,
validation_data=validation_dataset)
_, accuracy = model.evaluate(validation_dataset, verbose=-1)
print(f"Final Vali Acc: {round(accuracy * 99, 2)}%")
return history