-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_census.py
290 lines (228 loc) · 10.5 KB
/
test_census.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import os
import math
import random
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import tensorflow_addons as tfa
import matplotlib.pyplot as plt
from census_config import *
def load_census_data():
train_data_file = "census_data/n_train_data.csv"
test_data_file = "census_data/n_test_data.csv"
if os.path.exists(train_data_file) and os.path.exists(test_data_file):
train_data = pd.read_csv('census_data/n_train_data.csv', names=CSV_HEADER)
test_data = pd.read_csv('census_data/n_test_data.csv', names=CSV_HEADER)
else:
train_data_url = "https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data"
test_data_url = "https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.test"
train_data = pd.read_csv(train_data_url, header=None, names=CSV_HEADER)
test_data = pd.read_csv(test_data_url, header=None, names=CSV_HEADER)
test_data = test_data[1:]
train_data['income_bracket'] = train_data['income_bracket'].apply(lambda x: 0 if x.repalce('.', '') == ' <=50K' else 1)
test_data['income_bracket'] = test_data['income_bracket'].apply(lambda x: 0 if x.repalce('.', '') == ' <=50K' else 1)
train_data.to_csv(train_data_file, index=False, header=False)
test_data.to_csv(test_data_file, index=False, header=False)
return train_data_file, test_data_file, train_data, test_data
train_data_file, test_data_file, train_data, test_data = load_census_data()
numeric_feat = NUMERIC_FEATURE_NAMES
categorical_feat = CATEGORICAL_FEATURE_NAMES
total_feat = numeric_feat + categorical_feat
csv_header = CSV_HEADER
def build_categorical_vocab(df):
cate_feat_vocab = {}
for col in categorical_feat:
cate_feat_vocab[col] = []
cate_feat_vocab[col].extend(sorted(list(df[col].unique()))) ,
return cate_feat_vocab
cate_feat_vocab = build_categorical_vocab(train_data)
cfg = {
# feat config
'numeric_feat' : numeric_feat,
'categorical_feat' : categorical_feat,
'total_feat' : total_feat,
'csv_header' : csv_header,
'cate_feat_vocab' : cate_feat_vocab,
'target_col' : TARGET_COL_NAME,
# model config
'num_transformer_blocks' : NUM_TRANSFORMER_BLOCKS,
'embedding_dims' : EMBEDDING_DIMS,
'num_heads' : NUM_HEADS,
'mlp_hidden_units_factors' : MLP_HIDDEN_UNITS_FACTORS,
'num_mlp_blocks' : NUM_MLP_BLOCKS,
# training process config
'learning_rate' : LEARNING_RATE,
'weight_decay' : WEIGHT_DECAY,
'dropout_rate' : DROPOUT_RATE,
'batch_size' : BATCH_SIZE,
'num_epochs' : NUM_EPOCHS,
'seed' : SEED,
}
def get_tf_dataset_from_csv(csv_file_path, cfg, batch_size=128, shuffle=False):
def prepare_example_update(features):
target = features[cfg['target_col']]
features.pop(cfg['target_col'])
return features, target
dataset = tf.data.experimental.make_csv_dataset(
csv_file_path,
batch_size=batch_size,
column_names=cfg['csv_header'],
header=True,
num_epochs=1,
na_value="?",
shuffle=shuffle,
).map(prepare_example_update, num_parallel_calls=tf.data.AUTOTUNE, deterministic=False)
return dataset.cache()
def create_model_inputs(cfg):
inputs = {}
for feat in cfg['total_feat']:
if feat in cfg['numeric_feat']:
inputs[feat] = layers.Input(name=feat, shape=(), dtype=tf.float32)
if feat in cfg['categorical_feat']:
inputs[feat] = layers.Input(name=feat, shape=(), dtype=tf.string)
return inputs
def encode_inputs(inputs, cfg):
encoded_cate_feat, encoded_num_feat = [], []
for feat in inputs:
if feat in cfg['categorical_feat']:
vocabulary = cfg['cate_feat_vocab'][feat]
lookup = layers.StringLookup(vocabulary=vocabulary, mask_token=None, num_oov_indices=0, output_mode="int")
encoded_feature = lookup(inputs[feat])
embedding = layers.Embedding(input_dim=len(vocabulary), output_dim=cfg['embedding_dims'])
encoded_categorical_feature = embedding(encoded_feature)
encoded_cate_feat.append(encoded_categorical_feature)
if feat in cfg['numeric_feat']:
numerical_feature = tf.expand_dims(inputs[feat], -1)
encoded_num_feat.append(numerical_feature)
return encoded_cate_feat, encoded_num_feat
def create_mlp(hidden_units, dropout_rate, activation, normalization_layer, name=None):
mlp_layers = []
for units in hidden_units:
mlp_layers.append(normalization_layer),
mlp_layers.append(layers.Dense(units, activation=activation))
mlp_layers.append(layers.Dropout(dropout_rate))
return keras.Sequential(mlp_layers, name=name)
def create_baseline_model(cfg):
inputs = create_model_inputs(cfg)
encoded_cate_feat, encoded_num_feat = encode_inputs(inputs, cfg)
features = layers.concatenate(encoded_cate_feat + encoded_num_feat)
feedforward_units = [features.shape[-1]]
for layer_idx in range(cfg['num_mlp_blocks']):
features = create_mlp(
hidden_units=feedforward_units,
dropout_rate=cfg['dropout_rate'],
activation=keras.activations.gelu,
normalization_layer=layers.LayerNormalization(epsilon=1e-6),
name=f"feedforward_{layer_idx}",
)(features)
mlp_hidden_units = [factor * features.shape[-1] for factor in cfg['mlp_hidden_units_factors']]
features = create_mlp(
hidden_units=mlp_hidden_units,
dropout_rate=cfg['dropout_rate'],
activation=keras.activations.selu,
normalization_layer=layers.BatchNormalization(),
name="MLP",
)(features)
outputs = layers.Dense(units=1, activation="sigmoid", name="sigmoid")(features)
model = keras.Model(inputs=inputs, outputs=outputs)
return model
def run_experiment(model, train_data_file, test_data_file, num_epochs, learning_rate, weight_decay, batch_size,):
optimizer = tfa.optimizers.AdamW(learning_rate=learning_rate, weight_decay=weight_decay)
model.compile(
optimizer=optimizer,
loss=keras.losses.BinaryCrossentropy(),
metrics=[keras.metrics.BinaryAccuracy(name="accuracy")],
)
train_dataset = get_tf_dataset_from_csv(train_data_file, cfg, batch_size, shuffle=True)
validation_dataset = get_tf_dataset_from_csv(test_data_file, cfg, batch_size)
history = model.fit(
train_dataset,
epochs=num_epochs,
validation_data=validation_dataset,
verbose=1
)
_, accuracy = model.evaluate(validation_dataset, verbose=1)
print(f"Final Vali Acc: {round(accuracy * 100, 4)}%")
return history
def create_tabtransformer_model(cfg, use_column_embedding=False,):
inputs = create_model_inputs(cfg)
encoded_cate_feat, encoded_num_feat = encode_inputs(inputs, cfg)
encoded_categorical_features = tf.stack(encoded_cate_feat, axis=1)
numerical_features = layers.concatenate(encoded_num_feat)
if use_column_embedding:
num_columns = encoded_categorical_features.shape[1]
column_embedding = layers.Embedding(input_dim=num_columns, output_dim=cfg['embedding_dims'])
column_indices = tf.range(start=0, limit=num_columns, delta=1)
encoded_categorical_features = encoded_categorical_features + column_embedding(column_indices)
for block_idx in range(cfg['num_transformer_blocks']):
attention_output = layers.MultiHeadAttention(
num_heads=cfg['num_heads'],
key_dim=cfg['embedding_dims'],
dropout=cfg['dropout_rate'],
name=f"multihead_attention_{block_idx}",
)(encoded_categorical_features, encoded_categorical_features)
x = layers.Add(name=f"skip_connection1_{block_idx}")([attention_output, encoded_categorical_features])
x = layers.LayerNormalization(name=f"layer_norm1_{block_idx}", epsilon=1e-6)(x)
feedforward_output = create_mlp(
hidden_units=[cfg['embedding_dims']],
dropout_rate=cfg['dropout_rate'],
activation=keras.activations.gelu,
normalization_layer=layers.LayerNormalization(epsilon=1e-6),
name=f"feedforward_{block_idx}",
)(x)
x = layers.Add(name=f"skip_connection2_{block_idx}")([feedforward_output, x])
encoded_categorical_features = layers.LayerNormalization(
name=f"layer_norm2_{block_idx}",
epsilon=1e-6
)(x)
categorical_features = layers.Flatten()(encoded_categorical_features)
numerical_features = layers.LayerNormalization(epsilon=1e-6)(numerical_features)
features = layers.concatenate([categorical_features, numerical_features])
mlp_hidden_units = [factor * features.shape[-1] for factor in cfg['mlp_hidden_units_factors']]
features = create_mlp(
hidden_units=mlp_hidden_units,
dropout_rate=cfg['dropout_rate'],
activation=keras.activations.selu,
normalization_layer=layers.BatchNormalization(),
name="MLP",
)(features)
outputs = layers.Dense(
units=1,
activation="sigmoid",
name="sigmoid")(features)
model = keras.Model(inputs=inputs, outputs=outputs)
return model
def set_global_determinism(seed):
def set_seeds(seed):
os.environ['PYTHONHASHSEED'] = str(seed)
random.seed(seed)
tf.random.set_seed(seed)
np.random.seed(seed)
set_seeds(seed=seed)
os.environ['TF_DETERMINISTIC_OPS'] = '1'
os.environ['TF_CUDNN_DETERMINISTIC'] = '1'
tf.config.threading.set_inter_op_parallelism_threads(1)
tf.config.threading.set_intra_op_parallelism_threads(1)
set_global_determinism(seed=cfg['seed'])
# baseline_model = create_baseline_model(cfg)
# history = run_experiment(
# model=baseline_model,
# train_data_file=train_data_file,
# test_data_file=test_data_file,
# num_epochs=cfg['num_epochs'],
# learning_rate=cfg['learning_rate'],
# weight_decay=cfg['weight_decay'],
# batch_size=cfg['batch_size'],
# )
tabtransformer_model = create_tabtransformer_model(cfg=cfg, use_column_embedding=True)
history = run_experiment(
model=tabtransformer_model,
train_data_file=train_data_file,
test_data_file=test_data_file,
num_epochs=cfg['num_epochs'],
learning_rate=cfg['learning_rate'],
weight_decay=cfg['weight_decay'],
batch_size=cfg['batch_size'],
)