-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathtrainer.py
76 lines (68 loc) · 3.4 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import tensorflow as tf
from tensorflow.keras.callbacks import ModelCheckpoint, TensorBoard, LearningRateScheduler
from tensorflow.keras.optimizers import SGD, Adam
import augmentation
from ssd_loss import CustomLoss
from utils import bbox_utils, data_utils, io_utils, train_utils
args = io_utils.handle_args()
if args.handle_gpu:
io_utils.handle_gpu_compatibility()
batch_size = 32
epochs = 150
load_weights = False
with_voc_2012 = True
backbone = args.backbone
io_utils.is_valid_backbone(backbone)
#
if backbone == "mobilenet_v2":
from models.ssd_mobilenet_v2 import get_model, init_model
else:
from models.ssd_vgg16 import get_model, init_model
#
hyper_params = train_utils.get_hyper_params(backbone)
#
train_data, info = data_utils.get_dataset("voc/2007", "train+validation")
val_data, _ = data_utils.get_dataset("voc/2007", "test")
train_total_items = data_utils.get_total_item_size(info, "train+validation")
val_total_items = data_utils.get_total_item_size(info, "test")
if with_voc_2012:
voc_2012_data, voc_2012_info = data_utils.get_dataset("voc/2012", "train+validation")
voc_2012_total_items = data_utils.get_total_item_size(voc_2012_info, "train+validation")
train_total_items += voc_2012_total_items
train_data = train_data.concatenate(voc_2012_data)
labels = data_utils.get_labels(info)
labels = ["bg"] + labels
hyper_params["total_labels"] = len(labels)
img_size = hyper_params["img_size"]
train_data = train_data.map(lambda x : data_utils.preprocessing(x, img_size, img_size, augmentation.apply))
val_data = val_data.map(lambda x : data_utils.preprocessing(x, img_size, img_size))
data_shapes = data_utils.get_data_shapes()
padding_values = data_utils.get_padding_values()
train_data = train_data.shuffle(batch_size*4).padded_batch(batch_size, padded_shapes=data_shapes, padding_values=padding_values)
val_data = val_data.padded_batch(batch_size, padded_shapes=data_shapes, padding_values=padding_values)
#
ssd_model = get_model(hyper_params)
ssd_custom_losses = CustomLoss(hyper_params["neg_pos_ratio"], hyper_params["loc_loss_alpha"])
ssd_model.compile(optimizer=Adam(learning_rate=1e-3),
loss=[ssd_custom_losses.loc_loss_fn, ssd_custom_losses.conf_loss_fn])
init_model(ssd_model)
#
ssd_model_path = io_utils.get_model_path(backbone)
if load_weights:
ssd_model.load_weights(ssd_model_path)
ssd_log_path = io_utils.get_log_path(backbone)
# We calculate prior boxes for one time and use it for all operations because of the all images are the same sizes
prior_boxes = bbox_utils.generate_prior_boxes(hyper_params["feature_map_shapes"], hyper_params["aspect_ratios"])
ssd_train_feed = train_utils.generator(train_data, prior_boxes, hyper_params)
ssd_val_feed = train_utils.generator(val_data, prior_boxes, hyper_params)
checkpoint_callback = ModelCheckpoint(ssd_model_path, monitor="val_loss", save_best_only=True, save_weights_only=True)
tensorboard_callback = TensorBoard(log_dir=ssd_log_path)
learning_rate_callback = LearningRateScheduler(train_utils.scheduler, verbose=0)
step_size_train = train_utils.get_step_size(train_total_items, batch_size)
step_size_val = train_utils.get_step_size(val_total_items, batch_size)
ssd_model.fit(ssd_train_feed,
steps_per_epoch=step_size_train,
validation_data=ssd_val_feed,
validation_steps=step_size_val,
epochs=epochs,
callbacks=[checkpoint_callback, tensorboard_callback, learning_rate_callback])