-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathaugmentation.py
183 lines (171 loc) · 7.49 KB
/
augmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import tensorflow as tf
from utils import bbox_utils
def apply(img, gt_boxes):
"""Randomly applying data augmentation methods to image and ground truth boxes.
inputs:
img = (height, width, depth)
gt_boxes = (ground_truth_object_count, [y1, x1, y2, x2])
in normalized form [0, 1]
outputs:
modified_img = (final_height, final_width, depth)
modified_gt_boxes = (ground_truth_object_count, [y1, x1, y2, x2])
in normalized form [0, 1]
"""
# Color operations
# Randomly change hue, saturation, brightness and contrast of image
color_methods = [random_brightness, random_contrast, random_hue, random_saturation]
# Geometric operations
# Randomly sample a patch and flip horizontally image and ground truth boxes
geometric_methods = [patch, flip_horizontally]
#
for augmentation_method in geometric_methods + color_methods:
img, gt_boxes = randomly_apply_operation(augmentation_method, img, gt_boxes)
#
img = tf.clip_by_value(img, 0, 1)
return img, gt_boxes
def get_random_bool():
"""Generating random boolean.
outputs:
random boolean 0d tensor
"""
return tf.greater(tf.random.uniform((), dtype=tf.float32), 0.5)
def randomly_apply_operation(operation, img, gt_boxes, *args):
"""Randomly applying given method to image and ground truth boxes.
inputs:
operation = callable method
img = (height, width, depth)
gt_boxes = (ground_truth_object_count, [y1, x1, y2, x2])
outputs:
modified_or_not_img = (final_height, final_width, depth)
modified_or_not_gt_boxes = (ground_truth_object_count, [y1, x1, y2, x2])
"""
return tf.cond(
get_random_bool(),
lambda: operation(img, gt_boxes, *args),
lambda: (img, gt_boxes)
)
def random_brightness(img, gt_boxes, max_delta=0.12):
"""Randomly change brightness of the image.
inputs:
img = (height, width, depth)
gt_boxes = (ground_truth_object_count, [y1, x1, y2, x2])
outputs:
modified_img = (height, width, depth)
gt_boxes = (ground_truth_object_count, [y1, x1, y2, x2])
"""
return tf.image.random_brightness(img, max_delta), gt_boxes
def random_contrast(img, gt_boxes, lower=0.5, upper=1.5):
"""Randomly change contrast of the image.
inputs:
img = (height, width, depth)
gt_boxes = (ground_truth_object_count, [y1, x1, y2, x2])
outputs:
modified_img = (height, width, depth)
gt_boxes = (ground_truth_object_count, [y1, x1, y2, x2])
"""
return tf.image.random_contrast(img, lower, upper), gt_boxes
def random_hue(img, gt_boxes, max_delta=0.08):
"""Randomly change hue of the image.
inputs:
img = (height, width, depth)
gt_boxes = (ground_truth_object_count, [y1, x1, y2, x2])
outputs:
modified_img = (height, width, depth)
gt_boxes = (ground_truth_object_count, [y1, x1, y2, x2])
"""
return tf.image.random_hue(img, max_delta), gt_boxes
def random_saturation(img, gt_boxes, lower=0.5, upper=1.5):
"""Randomly change saturation of the image.
inputs:
img = (height, width, depth)
gt_boxes = (ground_truth_object_count, [y1, x1, y2, x2])
outputs:
modified_img = (height, width, depth)
gt_boxes = (ground_truth_object_count, [y1, x1, y2, x2])
"""
return tf.image.random_saturation(img, lower, upper), gt_boxes
def flip_horizontally(img, gt_boxes):
"""Flip image horizontally and adjust the ground truth boxes.
inputs:
img = (height, width, depth)
gt_boxes = (ground_truth_object_count, [y1, x1, y2, x2])
outputs:
modified_img = (height, width, depth)
modified_gt_boxes = (ground_truth_object_count, [y1, x1, y2, x2])
"""
flipped_img = tf.image.flip_left_right(img)
flipped_gt_boxes = tf.stack([gt_boxes[..., 0],
1.0 - gt_boxes[..., 3],
gt_boxes[..., 2],
1.0 - gt_boxes[..., 1]], -1)
return flipped_img, flipped_gt_boxes
##############################################################################
## Sample patch start
##############################################################################
def get_random_min_overlap():
"""Generating random minimum overlap value.
outputs:
min_overlap = random minimum overlap value 0d tensor
"""
overlaps = tf.constant([0.1, 0.3, 0.5, 0.7, 0.9], dtype=tf.float32)
i = tf.random.uniform((), minval=0, maxval=tf.shape(overlaps)[0], dtype=tf.int32)
return overlaps[i]
def expand_image(img, gt_boxes, height, width):
"""Randomly expanding image and adjusting ground truth object coordinates.
inputs:
img = (height, width, depth)
gt_boxes = (ground_truth_object_count, [y1, x1, y2, x2])
height = height of the image
width = width of the image
outputs:
img = (final_height, final_width, depth)
modified_gt_boxes = (ground_truth_object_count, [y1, x1, y2, x2])
final_height = final height of the image
final_width = final width of the image
"""
expansion_ratio = tf.random.uniform((), minval=1, maxval=4, dtype=tf.float32)
final_height, final_width = tf.round(height * expansion_ratio), tf.round(width * expansion_ratio)
pad_left = tf.round(tf.random.uniform((), minval=0, maxval=final_width - width, dtype=tf.float32))
pad_top = tf.round(tf.random.uniform((), minval=0, maxval=final_height - height, dtype=tf.float32))
pad_right = final_width - (width + pad_left)
pad_bottom = final_height - (height + pad_top)
#
mean, _ = tf.nn.moments(img, [0, 1])
expanded_image = tf.pad(img, ((pad_top, pad_bottom), (pad_left, pad_right), (0,0)), constant_values=-1)
expanded_image = tf.where(expanded_image == -1, mean, expanded_image)
#
min_max = tf.stack([-pad_top, -pad_left, pad_bottom+height, pad_right+width], -1) / [height, width, height, width]
modified_gt_boxes = bbox_utils.renormalize_bboxes_with_min_max(gt_boxes, min_max)
#
return expanded_image, modified_gt_boxes
def patch(img, gt_boxes):
"""Generating random patch and adjusting image and ground truth objects to this patch.
After this operation some of the ground truth boxes / objects could be removed from the image.
However, these objects are not excluded from the output, only the coordinates are changed as zero.
inputs:
img = (height, width, depth)
gt_boxes = (ground_truth_object_count, [y1, x1, y2, x2])
in normalized form [0, 1]
outputs:
modified_img = (final_height, final_width, depth)
modified_gt_boxes = (ground_truth_object_count, [y1, x1, y2, x2])
in normalized form [0, 1]
"""
img_shape = tf.cast(tf.shape(img), dtype=tf.float32)
org_height, org_width = img_shape[0], img_shape[1]
# Randomly expand image and adjust bounding boxes
img, gt_boxes = randomly_apply_operation(expand_image, img, gt_boxes, org_height, org_width)
# Get random minimum overlap value
min_overlap = get_random_min_overlap()
#
begin, size, new_boundaries = tf.image.sample_distorted_bounding_box(
tf.shape(img),
bounding_boxes=tf.expand_dims(gt_boxes, 0),
aspect_ratio_range=[0.5, 2.0],
min_object_covered=min_overlap)
#
img = tf.slice(img, begin, size)
img = tf.image.resize(img, (org_height, org_width))
gt_boxes = bbox_utils.renormalize_bboxes_with_min_max(gt_boxes, new_boundaries[0, 0])
#
return img, gt_boxes