Skip to content

Latest commit

 

History

History
54 lines (46 loc) · 1.87 KB

example-05-time-complexity.md

File metadata and controls

54 lines (46 loc) · 1.87 KB

Calculate time complexity

Find the time complexity of a function.

Example Usage

curl --location --request PUT 'https://api.openai.lawrencemcdaniel.com/examples/default-time-complexity' \
--header 'x-api-key: YOUR-API-GATEWAY-KEY' \
--header 'Content-Type: application/json' \
--data '{
    "input_text": "def foo(n, k):\\r\\n    accum = 0\\r\\n    for i in range(n):\\r\\n        for l in range(k):\\r\\n            accum += i\\r\\n    return accum\\r\\n"
}'

Example results

{
  "isBase64Encoded": false,
  "statusCode": 200,
  "headers": {
    "Content-Type": "application/json"
  },
  "body": {
    "id": "chatcmpl-7yUXtcSDMvMWI0eldblWaFa3UGc4d",
    "object": "chat.completion",
    "created": 1694651453,
    "model": "gpt-4-turbo-0613",
    "choices": [
      {
        "index": 0,
        "message": {
          "role": "assistant",
          "content": "The time complexity of the code is O(n * k), where n and k are the inputs to the function.\n\nThe outer loop runs 'n' times, and the inner loop runs 'k' times for each iteration of the outer loop. Therefore, the total number of iterations of the inner loop is n * k.\n\nInside the loops, we have a constant-time operation 'accum += i', which takes O(1) time.\n\nHence, the overall time complexity of the code is O(n * k)."
        },
        "finish_reason": "stop"
      }
    ],
    "usage": {
      "prompt_tokens": 64,
      "completion_tokens": 104,
      "total_tokens": 168
    }
  }
}

Official Documentation

OpenAI Playground