-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.py
223 lines (179 loc) · 9.65 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# coding: utf-8
import math
import numpy as np
import torch
import torch.nn as nn
from torchsummary import summary
from opt import MyConfig
class BMN_model(nn.Module):
"""
Model for BMN.
Return Arguements:
bm_confidence_map: (tensor[batch_size][C=2][D][T]): BM confidence map which consists of 'regression' and 'binary classiication'.
start: (tensor[batch_size][T]): start score sequence.
end: (tensor[batch_size][T]): end score sequence.
"""
def __init__(self, opt):
super(BMN_model, self).__init__()
self.tscale = opt.temporal_scale # T: 100(D: 100)
self.prop_boundary_ratio = opt.prop_boundary_ratio # 0.5
self.num_sample = opt.num_sample # 32
self.num_sample_perbin = opt.num_sample_perbin # 3
self.feat_dim=opt.feat_dim # input_channel: 400
self.hidden_dim_1d = 256
self.hidden_dim_2d = 128
self.hidden_dim_3d = 512
self._get_sample_mask()
# Base Module: (conv1d_1 + conv1d_2)
self.x_1d_b = nn.Sequential(
nn.Conv1d(self.feat_dim, self.hidden_dim_1d, kernel_size=3, padding=1, groups=4),
nn.ReLU(inplace=True),
nn.Conv1d(self.hidden_dim_1d, self.hidden_dim_1d, kernel_size=3, padding=1, groups=4),
nn.ReLU(inplace=True)
)
# Temporal Evaluation Module(start & end): 2 * (conv1d_3 + conv1d_4)
self.x_1d_s = nn.Sequential(
nn.Conv1d(self.hidden_dim_1d, self.hidden_dim_1d, kernel_size=3, padding=1, groups=4),
nn.ReLU(inplace=True),
nn.Conv1d(self.hidden_dim_1d, 1, kernel_size=1),
nn.Sigmoid()
)
self.x_1d_e = nn.Sequential(
nn.Conv1d(self.hidden_dim_1d, self.hidden_dim_1d, kernel_size=3, padding=1, groups=4),
nn.ReLU(inplace=True),
nn.Conv1d(self.hidden_dim_1d, 1, kernel_size=1),
nn.Sigmoid()
)
# Proposal Evaluation Module: BM_layer(x_1d_p) + conv3d + conv2d
self.x_1d_p = nn.Sequential(
nn.Conv1d(self.hidden_dim_1d, self.hidden_dim_2d, kernel_size=3, padding=1),
nn.ReLU(inplace=True)
)
self.x_3d_p = nn.Sequential(
nn.Conv3d(self.hidden_dim_2d, self.hidden_dim_3d, kernel_size=(self.num_sample, 1, 1),stride=(self.num_sample, 1, 1)),
nn.ReLU(inplace=True)
)
self.x_2d_p = nn.Sequential(
nn.Conv2d(self.hidden_dim_3d, self.hidden_dim_2d, kernel_size=1),
nn.ReLU(inplace=True),
nn.Conv2d(self.hidden_dim_2d, self.hidden_dim_2d, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(self.hidden_dim_2d, self.hidden_dim_2d, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(self.hidden_dim_2d, 2, kernel_size=1),
nn.Sigmoid()
)
def forward(self, inputs):
"""
Schematic diagram is as below:
inputs(Sf): [batch_size][C][T], [3][400][100]
|
| Base Module(conv1d_1 & 2)
|
base feature(Sf`): [batch_size][C][T], [3][256][100]
|
-------------------------------------------------
| |
TEM Module(conv1d_3 & 4) BM layer(sample)
| |BM feature map(Mf): [batch_size][C][T], [3][128][100]
temporal boundary probability sequence _boundary_matching_layer
|(Mf`): [batch_size][C][N][D][T], [3][128][32][100][100]
start: [batch_size][T], [3][100] conv_3d_1
end: [batch_size][T], [3][100] |(Mf`): [batch_size][C][D][T], [3][512][100][100]
onv_2d_1 & 2 & 3
|
BM confidence map(Mc):[batch_size][C][D][T], [3][2][100][100]
"""
base_feature = self.x_1d_b(inputs)
# Temporal Evaluation Module.
start = self.x_1d_s(base_feature).squeeze(1)
end = self.x_1d_e(base_feature).squeeze(1)
# Proposal Evaluation Module.
bm_feature_map = self.x_1d_p(base_feature)
bm_feature_map = self._boundary_matching_layer(bm_feature_map)
bm_feature_map = self.x_3d_p(bm_feature_map).squeeze(2)
bm_confidence_map = self.x_2d_p(bm_feature_map)
return bm_confidence_map, start, end
def _get_sample_mask(self):
"""
Generate all the possible proposals' sampling weight masks for Boundary-Matching layer.
Can be done apart from feature extraction, once you get 'tscale' and 'sample times(N)', you can make masks.
Return Arguements:
sample_mask: (np.ndarray[T][N'], [100][320000]): all sample masks.
"""
mask = []
for end_index in range(self.tscale):
mask_ = []
for start_index in range(self.tscale):
if start_index <= end_index:
start_proposal, end_proposal = start_index, end_index + 1
length_proposal = float(end_proposal - start_proposal) + 1
# Expand the proposal and add context feature from both side.
start_proposal = start_proposal - length_proposal * self.prop_boundary_ratio
end_proposal = end_proposal + length_proposal * self.prop_boundary_ratio
mask_.append(self._get_sample_mask_per_proposal(start_proposal, end_proposal,
self.tscale, self.num_sample, self.num_sample_perbin))
else:
mask_.append(np.zeros([self.tscale, self.num_sample]))
# For each end index, add 'tscale' proposal-masks to 'mask_'.
# before stack, mask_.shape: [start_index][T][N], [100][100][32]
# after stack, mask_.shape: [T][N][start_index], [100][32][100]
mask_ = np.stack(mask_, axis=2)
mask.append(mask_)
# before stack, mask.shape: [end_index][T][N][start_index], [100][100][32][100]
# after stack, mask.shape: [T][N][start_index][end_index], [100][32][100][100]
mask = np.stack(mask, axis=3).astype(np.float32)
self.sample_mask = nn.Parameter(torch.Tensor(mask).view(self.tscale, -1), requires_grad=False)
def _get_sample_mask_per_proposal(self, start_proposal, end_proposal, tscale, num_sample, num_sample_perbin):
"""
Generate a sampling weight mask of certain proposal.
Arguements:
start_proposal: (float[1]): start time of certain expanded proposal.
end_proposal: (float[1]): end time of certain expanded proposal.
tscale: (int[1]): length of whole feature.
num_sample: (int[1]): number of sample points, 'N' in paper.
num_sample_perbin: (int[1]): number of further sample times in each sample point.
NOTE: real sample times = num_sample * num_sample_perbin
Return Arguements:
mask: (Tensor[T][N]): sample mask for one proposal.
"""
length_proposal = end_proposal - start_proposal
length_sample_perbin = length_proposal / (num_sample * num_sample_perbin - 1.0)
samples = [start_proposal + length_sample_perbin * i for i in range(num_sample * num_sample_perbin)]
mask = []
for i in range(num_sample):
samples_perbin = samples[i * num_sample_perbin: (i + 1) * num_sample_perbin]
mask_perbin = np.zeros([tscale])
for j in samples_perbin:
j_fractional, j_integral = math.modf(j)
j_integral = int(j_integral)
if 0 <= j_integral < (tscale - 1):
mask_perbin[j_integral] += 1 - j_fractional
mask_perbin[j_integral + 1] += j_fractional
mask_perbin = 1.0 / num_sample_perbin * mask_perbin
mask.append(mask_perbin)
mask = np.stack(mask, axis=1)
return mask
def _boundary_matching_layer(self, bm_feature_map):
"""
For each proposal, through BM layer, conduct dot product at T demension between
sampling mask weight and temporal feature sequence to generate BM feature map, whose core is 'sample'.
Arguements:
bm_feature_map: (tensor[batch_size][C][T]): boundary-matching feature map.
Return Arguements:
output: (tensor[batch_size][C][N][D][T]): sampled feature.
"""
feature_size = bm_feature_map.size() # bm_feature_map.shape: [3][128][100]
output = torch.matmul(bm_feature_map, self.sample_mask).reshape(feature_size[0], feature_size[1],
self.num_sample, self.tscale, self.tscale)
return output
if __name__ == "__main__":
arg = MyConfig()
arg.parse()
model = BMN_model(opt=arg)
# inputs = torch.randn(3, 400, 100)
# bm_confidence_map, start, end = model(inputs)
# print(bm_confidence_map.shape) # torch.Size([3, 2, 100, 100])
# print(start.shape) # torch.Size([3, 100])
# print(end.shape) # torch.Size([3, 100])
# summary(model, (400, 100))