-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathloss.py
153 lines (112 loc) · 5.99 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# coding: utf-8
import torch
import numpy as np
def get_mask(tscale):
"""Generate mask of BM confidence map. """
# mask.shape: Duration * Start Time
mask = np.zeros([tscale, tscale], np.float32)
# The proposals whose ending boundaries exceed the range of video are left(mask = 0).
for i in range(tscale):
for j in range(i, tscale):
mask[i][j] = 1
return torch.Tensor(mask)
def bmn_loss(pred_bm, pred_start, pred_end, gt_iou_map, gt_start, gt_end, bm_mask):
"""
Loss of BMN, which consists of three parts: TEM, PEM-regression and PEM-classification.
Arguements:
1. Model output:
pred_bm([2*D*T]): (M_c): BM confidence map which consist of 'regression' and 'binary classification'.
pred_start([T]): Temporal boundary start probability sequence.
pred_end([T]): Temporal boundary end probability sequence.
2. Label from 'DataLoader':
gt_iou_map([T*T]): (G_c): iou between certain period and all GT proposals.
gt_start([T]): G_(S, w): score sequence which presents ioa between certain temporal moment and expanded start periods(G_S).
gt_end([T]): G_(E, w): score sequence which presents ioa between certain temporal moment and expanded end periods(G_E).
3. Mask.
bm_mask([T*T]): BM confidence map's mask.
"""
# pred_bm.real_shape: batch_size * 2 * D * T
pred_bm_reg = pred_bm[:,0].contiguous()
pred_bm_cls = pred_bm[:,1].contiguous()
gt_iou_map = gt_iou_map * bm_mask
tem_loss = tem_loss_func(pred_start, pred_end, gt_start, gt_end)
pem_reg_loss = pem_reg_loss_func(pred_bm_reg, gt_iou_map, bm_mask)
pem_cls_loss = pem_cls_loss_func(pred_bm_cls, gt_iou_map, bm_mask)
loss = tem_loss + 10 * pem_reg_loss + pem_cls_loss
return loss, tem_loss, pem_reg_loss, pem_cls_loss
def tem_loss_func(pred_start, pred_end, gt_start, gt_end):
"""
Adopt weighted binary logistic regression loss function for predicted and GT start/end score sequence.
Arguements:
same as 'bmn_loss'.
"""
def weighted_binary_logistic(pred_score, gt_label, threshold=0.5):
# Flatten to 1d-array.
pred_score, gt_label = pred_score.view(-1), gt_label.view(-1)
threshold_mask = (gt_label > threshold).float()
num_entries = len(threshold_mask)
num_positive = torch.sum(threshold_mask)
ratio = num_entries / num_positive
# For positive one(above threshold), loss = num_entries / num_positive * log(p_i)
# For negative one(below threshold), loss = num_entries / num_negative * log(1 - p_i)
epsilon = 1e-6
loss_positive = 0.5 * ratio * torch.log(pred_score + epsilon) * threshold_mask
loss_negative = 0.5 * ratio / (ratio - 1) * torch.log(1.0 - pred_score + epsilon) * (1.0 - threshold_mask)
loss = -1.0 * torch.mean(loss_positive + loss_negative)
return loss
loss_start = weighted_binary_logistic(pred_start, gt_start)
loss_end = weighted_binary_logistic(pred_end, gt_end)
tem_loss = loss_start + loss_end
return tem_loss
def pem_reg_loss_func(pred_reg_score, gt_iou_map, bm_mask, high_threshold=0.7, low_threshold=0.3):
"""
Use MSE loss + L2 to make each proposal's regression score approxiamte to proposal's IoU between GT.
Arguements:
pred_reg_score([T*T]): regression part of 'BM_confidence_map'.
gt_iou_map([T*T]): (G_c): iou between certain period and all GT proposals.
bm_mask([T*T]): BM confidence map's mask.
high_threshold(float[1]): high threshold of regression score.
low_threshold(float[1]): low threshold of regression score.
"""
gt_iou_map = gt_iou_map * bm_mask
mask_high = (gt_iou_map > high_threshold).float()
mask_medium = ((gt_iou_map <= high_threshold) & (gt_iou_map > low_threshold)).float()
mask_low = ((gt_iou_map <= low_threshold) & (gt_iou_map > 0.)).float()
num_high = torch.sum(mask_high)
num_medium = torch.sum(mask_medium)
num_low = torch.sum(mask_low)
ratio_1 = num_high / num_medium
# eg: gt_iou_map.shape: torch.Size([2,3]), then *gt_iou_map.shape: 2 3
mask_medium_rand = torch.Tensor(np.random.rand(*gt_iou_map.shape)).cuda()
mask_medium_rand = mask_medium_rand * mask_medium
mask_medium_rand = (mask_medium_rand > (1 - ratio_1)).float()
ratio_2 = num_high / num_low
mask_low_rand = torch.Tensor(np.random.rand(*gt_iou_map.shape)).cuda()
mask_low_rand = mask_low_rand * mask_low
mask_low_rand = (mask_low_rand > (1 - ratio_2)).float()
weights = mask_high + mask_medium_rand + mask_low_rand
MSE_loss_function = torch.nn.MSELoss()
loss = MSE_loss_function(pred_reg_score * weights, gt_iou_map * weights)
loss = 0.5 * torch.sum(loss * torch.ones(*weights.shape).cuda()) / torch.sum(weights)
return loss
def pem_cls_loss_func(pred_cls_score, gt_iou_map, bm_mask, threshold=0.9):
"""
Adopt weighted binary logistic regression loss function for predicted binary classification confidence map and GT iou map.
Arguements:
pred_cls_score([T*T]): binary classification part of 'BM_confidence_map'.
gt_iou_map([T*T]): (G_c): iou between certain period and all GT proposals.
threshold(float[1]): threshold of gt_iou_map.
"""
mask_positive = (gt_iou_map > threshold).float()
mask_negative = (gt_iou_map <= threshold).float() * bm_mask
num_positive = torch.sum(mask_positive)
num_negative = torch.sum(mask_negative)
num_entries = num_positive + num_negative
# For positive one(above threshold), loss = num_entries / num_positive * log(p_i)
# For negative one(below threshold), loss = num_entries / num_negative * log(1 - p_i)
epsilon = 1e-6
ratio = num_entries / num_positive
loss_positive = 0.5 * ratio * torch.log(pred_cls_score + epsilon) * mask_positive
loss_negative = 0.5 * ratio / (ratio - 1) * torch.log(1.0 - pred_cls_score + epsilon) * mask_negative
loss = -1.0 * torch.sum(loss_positive + loss_negative) / num_entries
return loss