-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathnet.py
370 lines (260 loc) · 13.2 KB
/
net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
#from char_rnn import CharRNN
from config import Config
from attention import Attention
import numpy as np
import pickle
class Net(nn.Module):
def __init__(self, config, load_embeddings = True):
"""
config: object containing configuration info
"""
super(Net, self).__init__()
self.config = config
# preprocessed sizes for embedding layers
self.charset_size = config.info["CHARSET_SIZE"]
self.ruleset_size = config.info["RULESET_SIZE"]
self.varset_size = config.info["VARSET_SIZE"]
# dimensions for embedding layers
self.rule_embedding_dim = config.info["RULE_DIM"]
self.var_embedding_dim = config.info["VAR_DIM"]
self.char_embedding_dim = config.info["HIDDEN_CHAR_DIM"]
self.state_embedding_dim = config.info["STATE_DIM"]
self.key_embedding_dim = config.info["RULEKEY_DIM"]
# dimension of LSTM hidden vector
self.hidden_dim = config.info["HIDDEN_DIM"]
# dimension of character RNN hidden vector
self.hidden_char_dim = config.info["HIDDEN_CHAR_DIM"]
# dropout parameter
self.dropout_p = config.info["DROPOUT_P"]
# number of vars
self.maxvars = config.info["MAX_VARS"]
# character RNN for query rulehead
self.hidden_char = self.init_hidden(self.hidden_char_dim)
self.char_embedding = nn.Embedding(self.charset_size, self.char_embedding_dim)
self.char_lstm = nn.LSTM(self.char_embedding_dim, self.hidden_char_dim)
# attention for variables
self.var_embedding = nn.Embedding(self.varset_size, self.var_embedding_dim)
self.var_attention = Attention(self.varset_size, self.var_embedding_dim)
if (load_embeddings):
self.glove = pickle.load(open('glove.pkl', 'rb'))
self.init_variable_embeddings() #initializes using GloVe
# ENCODING layer (f_enc(q_t, v_t) = s_t)
#self.enc_input_dim = self.hidden_char_dim + self.maxvars * self.var_embedding_dim
#self.var_encoder = nn.Linear(self.maxvars * self.var_embedding_dim, 50)
self.enc_input_dim = self.hidden_char_dim
self.enc_fc1 = nn.Linear(self.enc_input_dim, self.state_embedding_dim)
self.enc_fc2 = nn.Linear(self.state_embedding_dim, self.state_embedding_dim)
# LSTM layer (f_lstm)
self.hidden = self.init_hidden(self.hidden_dim, nlayers = 2)
self.lstm_input_dim = self.state_embedding_dim + self.rule_embedding_dim * 2
self.lstm = nn.LSTM(self.lstm_input_dim, self.hidden_dim, 2)
# RULE layers (f_rule)
#self.rule_keys = nn.Embedding(self.ruleset_size, self.key_embedding_dim)
# Rule Embedding Layer (M_rule)
self.rule_embedding = nn.Embedding(self.ruleset_size, self.rule_embedding_dim)
self.rule_fc1 = nn.Linear(self.hidden_dim, self.rule_embedding_dim)
self.rule_fc2 = nn.Linear(self.rule_embedding_dim, self.rule_embedding_dim)
# Termination layers (f_end)
self.term_fc = nn.Linear(self.hidden_dim, 2)
# Variable layers (f_var)
self.vars_fc1 = nn.Linear(self.var_embedding_dim, self.var_embedding_dim)
self.vars_fc2 = nn.Linear(self.var_embedding_dim, self.varset_size)
def forward(self, query, rule, var):
""" query: indexes corresponding to characters in query head in a LongTensor
rule: tuple with 2 LongTensors, the first contains the index of the parent rule and the
second contains the index of the sister rule
var: LongTensor containing var_ids of variables of the rule
returns a distrbution over the rules, a distribution over
termination statuses and a distribution over variables
"""
q_t = self.get_query_embedding(query)
parent_rule, sister_rule = rule
if (parent_rule is not None):
parent_t = self.rule_embedding(parent_rule)
else:
parent_t = torch.zeros_like(self.rule_embedding(torch.LongTensor([0])))
if (sister_rule is not None):
sister_t = self.rule_embedding(sister_rule)
else:
sister_t = torch.zeros_like(self.rule_embedding(torch.LongTensor([0])))
r_t = torch.cat((parent_t.view(1, 1, -1), sister_t.view(1, 1, -1)), dim = 2)
h = self.get_hidden(q_t, r_t) # [1, 1, 256]
# get distribution over rulekeys
key = self.rule_fc2(F.elu(self.rule_fc1(h))) # [1, 1, 256]
rulekeys = self.rule_embedding.weight.t() # [256, num_rules]
rule_distribution = F.log_softmax(torch.matmul(key, rulekeys), dim = 2) # [1, 1, num_rules]
# get termination probability
term = F.log_softmax(self.term_fc(h), dim = 2) # [1, 1, 2]
# get variable distributions
v_t = var
var_output = []
for i in range(self.maxvars):
v = v_t[i].view(1, 1, -1)
var = F.log_softmax(self.vars_fc2(F.elu(self.vars_fc1(v))), dim = 2) # [1, 1, num_vars]
var_output.append(var)
return rule_distribution, term, var_output
def query_to_tensor(self, query):
""" query : query head as a string
returns indexes corresponding to characters in a LongTensor """
query = query.split('(')[0]
chartensor = torch.zeros(len(query)).long()
for i in range(len(query)):
c = query[i]
if c in self.config.char2index:
chartensor[i] = self.config.char2index[c]
return Variable(chartensor)
def get_query_embedding(self, query):
""" query : indices corresponding to characters in a LongTensor
returns character level embedding of query"""
char_embeds = self.char_embedding(query)
char_lvl, self.hidden_char = self.char_lstm(char_embeds.view(len(query),1,-1), self.hidden_char)
return char_lvl[-1]
def rule_to_tensor(self, rule):
""" rule : rule as a string
returns index corresponding to rule in a LongTensor """
try:
rule = rule.strip()
ruletensor = torch.zeros(1).long()
if (self.config.isFact(rule)):
rule = self.config.getFactSurface(rule)
ruletensor[0] = self.config.rule2index[rule]
return Variable(ruletensor)
except:
return None
def vars_to_tensor(self, var):
""" var : list of vars
returns indices corresponding to vars in a LongTensor"""
if var is None:
return torch.zeros((self.maxvars, 1, self.var_embedding_dim))
vartensor = torch.zeros((len(var), 1, 300))
for i in range(len(var)):
v = str(var[i])
if v in self.config.var2index:
x = torch.zeros(1).long()
x[0] = self.config.var2index[v]
vartensor[i] = self.var_embedding(x)
else:
vartensor[i] = torch.zeros(1, 1, 300)
return Variable(vartensor)
"""def get_vars_embedding(self, var):
var : indices corresponding to variables in a LongTensor
returns embedding of variables with attention
if (var is not None):
vartensor = self.var_embedding(var).view(len(var), 1, -1)
else:
vartensor = torch.zeros((self.maxvars, 1, self.var_embedding_dim))
return vartensor"""
def get_hidden(self, query, rule):
""" query: character level embedding of query
rule: embedding of rule at current step
"""
"""if (var is not None):
var = F.elu(self.var_encoder(var.view(1, 1, -1)))
merged = torch.cat([query.view(1, 1, -1), var.view(1, 1, -1)], dim = 2)"""
merged = query.view(1, 1, -1)
# pass concatenated q_t and v_t through f_enc to get s_t
state = F.elu(self.enc_fc1(merged))
state = self.enc_fc2(state)
# concatenate state with rule embedding and pass through LSTM
merged = torch.cat([state.view(1, 1, -1), rule.view(1, 1, -1)], dim=2)
out, self.hidden = self.lstm(merged, self.hidden)
h_t = out[-1].view(1, 1, -1)
# layers can be separated using h_n.view(num_layers, num_directions, batch, hidden_size)
#h_t = h_t.view(2, -1, 1, self.hidden_dim)[-1]
#print(h_t)
return h_t
def init_hidden(self, size, nlayers = 1, batch_size = 1):
""" size : dimension of hidden vector
returns (h_0, c_0) for LSTM"""
hidden = (Variable(torch.zeros(nlayers, batch_size, size)),
Variable(torch.zeros(nlayers, batch_size, size)))
return hidden
def init_variable_embeddings(self):
emb_mean,emb_std = -0.005838499,0.48782197
nb_words = self.config.n_vars
embedding_matrix = np.random.normal(emb_mean, emb_std, (nb_words, 300))
for (i, var) in self.config.index2var.items():
if var in self.glove:
print(var)
embedding_vector = self.glove[var]
embedding_matrix[i] = embedding_vector
self.var_embedding.weight.data.copy_(torch.from_numpy(embedding_matrix))
def init_variable_embeddings2(self, file = "glove.840B.300d.pkl"):
""" initializes variable embedding layer using GloVe 300d embeddings"""
vardict = self.config.var2index
with open('glove.840B.300d.pkl') as glove:
embeddings_index = pickle.load(glove)
embeddings_index = dict(get_coefs(*o.split(" ")) for o in open(file))
#all_embs = np.stack(embeddings_index.values())
emb_mean,emb_std = -0.005838499,0.48782197
#embed_size = all_embs.shape[1]
nb_words = len(vardict)
embedding_matrix = np.random.normal(emb_mean, emb_std, (nb_words, 300))
def vec(w):
return embedding_matrix.loc[w].as_matrix()
for word, i in vardict.items():
print(word)
embedding_vector = embeddings_index.get(word)
if embedding_vector is not None:
embedding_matrix[i] = embedding_vector
else:
embedding_vector = embeddings_index.get(word.capitalize())
if embedding_vector is not None:
embedding_matrix[i] = embedding_vector
self.var_embedding.weight.data.copy_(torch.fromnumpy(embedding_matrix))
def write_similarities(self, file = "./sim2.txt"):
"""calculates similarities from embeddings and write to file"""
def cosine_similarity(x1, x2=None, eps=1e-8):
x2 = x1 if x2 is None else x2
w1 = x1.norm(p=2, dim=1, keepdim=True)
w2 = w1 if x2 is x1 else x2.norm(p=2, dim=1, keepdim=True)
return torch.mm(x1, x2.t()) / (w1 * w2.t()).clamp(min=eps)
def similarity(x, y):
sims = (cosine_similarity(x, y) + 1.0)/2.0
return sims
# write atom similarities
vardict = self.config.index2var
f = open(file, "w")
for i in range(self.config.info["VARSET_SIZE"] - 1):
var1 = vardict[i]
#print(var1)
if var1[0].isupper(): # pass if not atom
continue
emb1 = self.var_embedding(torch.LongTensor([i]))
for j in range(i+1, self.config.info["VARSET_SIZE"]):
var2 = vardict[j]
#print(var2)
if var2[0].isupper():
continue
emb2 = self.var_embedding(torch.LongTensor([j]))
sim = similarity(emb1, emb2)
#sim = (0.5 * (1 + np.dot(emb1, emb2)
# / (np.linalg.norm(emb1) * np.linalg.norm(emb2).t()))[0]
f.write("%s ~ %s = %f\n" % (var1, var2, sim))
# write rule predicate similarities
# TODO: ???? How to deal with predicates that have multiple associated rules ????
ruledict = self.config.index2rule
def getPredicate(rule):
endPred = rule.find("(")
if (endPred == -1):
endPred = rule.find(":")
if (endPred == -1):
endPred = rule.find(".")
return rule[:endPred]
for i in range(self.config.info["RULESET_SIZE"] - 1):
rule1 = ruledict[i]
pred1 = getPredicate(rule1)
emb1 = self.rule_embedding(torch.LongTensor([i]))
for j in range(i+1, self.config.info["RULESET_SIZE"]):
rule2 = ruledict[j]
pred2 = getPredicate(rule2)
emb2 = self.rule_embedding(torch.LongTensor([j]))
#sim = (0.5 * (1 + np.dot(emb1, emb2)
# / (np.linalg.norm(emb1) * np.linalg.norm(emb2).t()))[0]
sim = similarity(emb1, emb2)
f.write("%s ~ %s = %f\n" % (pred1, pred2, sim))
f.close()