-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathggp.py
63 lines (48 loc) · 2.16 KB
/
ggp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import numpy as np
import gpflow
import tensorflow as tf
from gpflow.mean_functions import Constant
from scipy.cluster.vq import kmeans2
from GraphSVGP import GraphSVGP
from graph_kernel import GraphPolynomial, NodeInducingPoints
from utils import load_dataset
def training_step(X_train, y_train, optimizer, gprocess):
with tf.GradientTape(watch_accessed_variables=False) as tape:
tape.watch(gprocess.trainable_variables)
objective = -gprocess.elbo((X_train, y_train))
gradients = tape.gradient(objective, gprocess.trainable_variables)
optimizer.apply_gradients(zip(gradients, gprocess.trainable_variables))
return objective
def evaluate(X_val, y_val, gprocess):
pred_y, pred_y_var = gprocess.predict_y(X_val)
pred_classes = np.argmax(pred_y.numpy(), axis=-1)
acc = np.mean(pred_classes == y_val)
return acc
def run_training():
(adj_matrix, node_feats, node_labels, idx_train, idx_val,
idx_test) = load_dataset("cora", tfidf_transform=True,
float_type=np.float64)
idx_train = tf.constant(idx_train)
idx_val = tf.constant(idx_val)
idx_test = tf.constant(idx_test)
num_classes = len(np.unique(node_labels))
# Init kernel
kernel = GraphPolynomial(adj_matrix, node_feats, idx_train)
# Init inducing points
inducing_points = kmeans2(node_feats, len(idx_train), minit='points')[0] # use as many inducing points as training samples
inducing_points = NodeInducingPoints(inducing_points)
# Init GP model
mean_function = Constant()
gprocess = GraphSVGP(kernel, gpflow.likelihoods.MultiClass(num_classes),
inducing_points, mean_function=mean_function,
num_latent_gps=num_classes, whiten=True, q_diag=False)
# Init optimizer
optimizer = tf.optimizers.Adam()
for epoch in range(2000):
elbo = -training_step(idx_train, node_labels[idx_train], optimizer,
gprocess)
elbo = elbo.numpy()
acc = evaluate(idx_test, node_labels[idx_test], gprocess)
print(f"{epoch}:\tELBO: {elbo:.5f}\tAcc: {acc:.3f}")
if __name__ == '__main__':
run_training()