You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I am working on Task 1 of FeTS2022 Challenge, and I have trouble validating the fact that modifying the "epochs_per_round" value outputted by the "constant_hyper_parameters" function given to the "run_challenge_experiment" function is actually doing something.
Collaborators chosen to train for round 0: \experiment.py\:\396\
['1', '2', '3']
INFO Hyper-parameters for round 0: \experiment.py\:\424\
learning rate: 5e-05
epochs_per_round: 1.0
INFO Waiting for tasks... \collaborator.py\:\178\
INFO Sending tasks to collaborator 3 for round 0 \aggregator.py\:\312\
INFO Received the following tasks: ['aggregated_model_validation', 'train', 'locally_tuned_model_validation'] \collaborator.py\:\168\
[14:27:18] INFO Using TaskRunner subclassing API \collaborator.py\:\253\
********************
Starting validation :
********************
Looping over validation data: 100%|██████████| 1/1 [00:06<00:00, 6.83s/it] Epoch Final validation loss : 1.0
Epoch Final validation dice : 0.2386646866798401
Epoch Final validation dice_per_label : [0.9437699913978577, 0.007874629460275173, 0.0030141547322273254, 2.570958582744781e-13]
[14:27:25] INFO 1.0 \fets_challenge_model.py\:\48\
INFO {'dice': 0.2386646866798401, 'dice_per_label': [0.9437699913978577, 0.007874629460275173, 0.0030141547322273254, \fets_challenge_model.py\:\49\
2.570958582744781e-13]}
METRIC Round 0, collaborator 3 is sending metric for task aggregated_model_validation: valid_loss 1.000000 \collaborator.py\:\416\
METRIC Round 0, collaborator 3 is sending metric for task aggregated_model_validation: valid_dice 0.238665 \collaborator.py\:\416\
METRIC Round 0, collaborator 3 is sending metric for task aggregated_model_validation: valid_dice_per_label_0 0.943770 \collaborator.py\:\416\
METRIC Round 0, collaborator 3 is sending metric for task aggregated_model_validation: valid_dice_per_label_1 0.007875 \collaborator.py\:\416\
METRIC Round 0, collaborator 3 is sending metric for task aggregated_model_validation: valid_dice_per_label_2 0.003014 \collaborator.py\:\416\
METRIC Round 0, collaborator 3 is sending metric for task aggregated_model_validation: valid_dice_per_label_4 0.000000 \collaborator.py\:\416\
INFO Collaborator 3 is sending task results for aggregated_model_validation, round 0 \aggregator.py\:\486\
METRIC Round 0, collaborator validate_agg aggregated_model_validation result valid_loss: 1.000000 \aggregator.py\:\531\
METRIC Round 0, collaborator validate_agg aggregated_model_validation result valid_dice: 0.238665 \aggregator.py\:\531\
METRIC Round 0, collaborator validate_agg aggregated_model_validation result valid_dice_per_label_0: 0.943770 \aggregator.py\:\531\
METRIC Round 0, collaborator validate_agg aggregated_model_validation result valid_dice_per_label_1: 0.007875 \aggregator.py\:\531\
METRIC Round 0, collaborator validate_agg aggregated_model_validation result valid_dice_per_label_2: 0.003014 \aggregator.py\:\531\
METRIC Round 0, collaborator validate_agg aggregated_model_validation result valid_dice_per_label_4: 0.000000 \aggregator.py\:\531\
INFO Using TaskRunner subclassing API \collaborator.py\:\253\
INFO Run 0 epoch of 0 round \fets_challenge_model.py\:\143\
********************
Starting Training :
********************
Looping over training data: 0%| | 0/80 [00:00<?, ?it/s]/home/manthe/anaconda3/envs/fets2022_env/lib/python3.7/site-packages/torchio/data/queue.py:215: RuntimeWarning: Queue length (100) not divisible by the number of patches per volume (40)
warnings.warn(message, RuntimeWarning)
Looping over training data: 100%|██████████| 80/80 [00:47<00:00, 1.67it/s] Epoch Final Train loss : 1.0
Epoch Final Train dice : 0.22838935144245626
Epoch Final Train dice_per_label : [0.8640330836176873, 0.004636458929081044, 0.04488786500078277, 6.515775969446157e-12]
[14:28:13] METRIC Round 0, collaborator 3 is sending metric for task train: loss 1.000000 \collaborator.py\:\416\
METRIC Round 0, collaborator 3 is sending metric for task train: train_dice 0.228389 \collaborator.py\:\416\
METRIC Round 0, collaborator 3 is sending metric for task train: train_dice_per_label_0 0.864033 \collaborator.py\:\416\
METRIC Round 0, collaborator 3 is sending metric for task train: train_dice_per_label_1 0.004636 \collaborator.py\:\416\
METRIC Round 0, collaborator 3 is sending metric for task train: train_dice_per_label_2 0.044888 \collaborator.py\:\416\
METRIC Round 0, collaborator 3 is sending metric for task train: train_dice_per_label_4 0.000000 \collaborator.py\:\416\
INFO Collaborator 3 is sending task results for train, round 0 \aggregator.py\:\486\
METRIC Round 0, collaborator metric train result loss: 1.000000 \aggregator.py\:\531\
METRIC Round 0, collaborator metric train result train_dice: 0.228389 \aggregator.py\:\531\
METRIC Round 0, collaborator metric train result train_dice_per_label_0: 0.864033 \aggregator.py\:\531\
METRIC Round 0, collaborator metric train result train_dice_per_label_1: 0.004636 \aggregator.py\:\531\
METRIC Round 0, collaborator metric train result train_dice_per_label_2: 0.044888 \aggregator.py\:\531\
METRIC Round 0, collaborator metric train result train_dice_per_label_4: 0.000000 \aggregator.py\:\531\
[14:28:14] INFO Using TaskRunner subclassing API \collaborator.py\:\253\
********************
Starting validation :
********************
Looping over validation data: 100%|██████████| 1/1 [00:06<00:00, 6.97s/it] Epoch Final validation loss : 1.0
Epoch Final validation dice : 0.244467630982399
Epoch Final validation dice_per_label : [0.9684193134307861, 0.00489959167316556, 0.004551596473902464, 4.3230536880302373e-13]
[14:28:21] INFO 1.0 \fets_challenge_model.py\:\48\
INFO {'dice': 0.244467630982399, 'dice_per_label': [0.9684193134307861, 0.00489959167316556, 0.004551596473902464, \fets_challenge_model.py\:\49\
4.3230536880302373e-13]}
METRIC Round 0, collaborator 3 is sending metric for task locally_tuned_model_validation: valid_loss 1.000000 \collaborator.py\:\416\
METRIC Round 0, collaborator 3 is sending metric for task locally_tuned_model_validation: valid_dice 0.244468 \collaborator.py\:\416\
METRIC Round 0, collaborator 3 is sending metric for task locally_tuned_model_validation: valid_dice_per_label_0 0.968419 \collaborator.py\:\416\
METRIC Round 0, collaborator 3 is sending metric for task locally_tuned_model_validation: valid_dice_per_label_1 0.004900 \collaborator.py\:\416\
METRIC Round 0, collaborator 3 is sending metric for task locally_tuned_model_validation: valid_dice_per_label_2 0.004552 \collaborator.py\:\416\
METRIC Round 0, collaborator 3 is sending metric for task locally_tuned_model_validation: valid_dice_per_label_4 0.000000 \collaborator.py\:\416\
INFO Collaborator 3 is sending task results for locally_tuned_model_validation, round 0 \aggregator.py\:\486\
METRIC Round 0, collaborator validate_local locally_tuned_model_validation result valid_loss: 1.000000 \aggregator.py\:\531\
METRIC Round 0, collaborator validate_local locally_tuned_model_validation result valid_dice: 0.244468 \aggregator.py\:\531\
METRIC Round 0, collaborator validate_local locally_tuned_model_validation result valid_dice_per_label_0: 0.968419 \aggregator.py\:\531\
METRIC Round 0, collaborator validate_local locally_tuned_model_validation result valid_dice_per_label_1: 0.004900 \aggregator.py\:\531\
METRIC Round 0, collaborator validate_local locally_tuned_model_validation result valid_dice_per_label_2: 0.004552 \aggregator.py\:\531\
METRIC Round 0, collaborator validate_local locally_tuned_model_validation result valid_dice_per_label_4: 0.000000 \aggregator.py\:\531\
INFO All tasks completed on 3 for round 0... \collaborator.py\:\171\
INFO Collaborator 3 took simulated time: 4.6 minutes \experiment.py\:\476\
INFO Waiting for tasks... \collaborator.py\:\178\
INFO Sending tasks to collaborator 2 for round 0 \aggregator.py\:\312\
INFO Received the following tasks: ['aggregated_model_validation', 'train', 'locally_tuned_model_validation'] \collaborator.py\:\168\
[14:28:22] INFO Using TaskRunner subclassing API \collaborator.py\:\253\
********************
Starting validation :
********************
Looping over validation data: 100%|██████████| 1/1 [00:07<00:00, 7.06s/it] Epoch Final validation loss : 0.9427357912063599
Epoch Final validation dice : 0.26110994815826416
Epoch Final validation dice_per_label : [0.9405062198638916, 0.0011481185210868716, 0.045521270483732224, 0.05726420879364014]
[14:28:30] INFO 0.9427357912063599 \fets_challenge_model.py\:\48\
INFO {'dice': 0.26110994815826416, 'dice_per_label': [0.9405062198638916, 0.0011481185210868716, 0.045521270483732224, \fets_challenge_model.py\:\49\
0.05726420879364014]}
METRIC Round 0, collaborator 2 is sending metric for task aggregated_model_validation: valid_loss 0.942736 \collaborator.py\:\416\
METRIC Round 0, collaborator 2 is sending metric for task aggregated_model_validation: valid_dice 0.261110 \collaborator.py\:\416\
METRIC Round 0, collaborator 2 is sending metric for task aggregated_model_validation: valid_dice_per_label_0 0.940506 \collaborator.py\:\416\
METRIC Round 0, collaborator 2 is sending metric for task aggregated_model_validation: valid_dice_per_label_1 0.001148 \collaborator.py\:\416\
METRIC Round 0, collaborator 2 is sending metric for task aggregated_model_validation: valid_dice_per_label_2 0.045521 \collaborator.py\:\416\
METRIC Round 0, collaborator 2 is sending metric for task aggregated_model_validation: valid_dice_per_label_4 0.057264 \collaborator.py\:\416\
INFO Collaborator 2 is sending task results for aggregated_model_validation, round 0 \aggregator.py\:\486\
METRIC Round 0, collaborator validate_agg aggregated_model_validation result valid_loss: 0.942736 \aggregator.py\:\531\
METRIC Round 0, collaborator validate_agg aggregated_model_validation result valid_dice: 0.261110 \aggregator.py\:\531\
METRIC Round 0, collaborator validate_agg aggregated_model_validation result valid_dice_per_label_0: 0.940506 \aggregator.py\:\531\
METRIC Round 0, collaborator validate_agg aggregated_model_validation result valid_dice_per_label_1: 0.001148 \aggregator.py\:\531\
METRIC Round 0, collaborator validate_agg aggregated_model_validation result valid_dice_per_label_2: 0.045521 \aggregator.py\:\531\
METRIC Round 0, collaborator validate_agg aggregated_model_validation result valid_dice_per_label_4: 0.057264 \aggregator.py\:\531\
INFO Using TaskRunner subclassing API \collaborator.py\:\253\
INFO Run 0 epoch of 0 round
...
Which is the desired behaviour: collaborator 3 trains for 1.0 epochs on the 2 data points with 40 patches each (am I right on this ?).
However, if a change the function like this (literally just modifying the given values for epochs_per_round from 1.0 to 2.0):
def constant_hyper_parameters(collaborators,
db_iterator,
fl_round,
collaborators_chosen_each_round,
collaborator_times_per_round):
"""Set the training hyper-parameters for the round.
Args:
collaborators: list of strings of collaborator names
db_iterator: iterator over history of all tensors.
Columns: ['tensor_name', 'round', 'tags', 'nparray']
fl_round: round number
collaborators_chosen_each_round: a dictionary of {round: list of collaborators}. Each list indicates which collaborators trained in that given round.
collaborator_times_per_round: a dictionary of {round: {collaborator: total_time_taken_in_round}}.
Returns:
tuple of (learning_rate, epochs_per_round, batches_per_round). One of epochs_per_round and batches_per_round must be None.
"""
# these are the hyperparameters used in the May 2021 recent training of the actual FeTS Initiative
# they were tuned using a set of data that UPenn had access to, not on the federation itself
# they worked pretty well for us, but we think you can do better :)
epochs_per_round = 2.0
batches_per_round = None
learning_rate = 5e-5
return (learning_rate, epochs_per_round, batches_per_round)
I still have the same results on the "small_split.csv" partitioning.
Collaborators chosen to train for round 0: \experiment.py\:\396\
['1', '2', '3']
INFO Hyper-parameters for round 0: \experiment.py\:\424\
learning rate: 5e-05
epochs_per_round: 2.0
INFO Waiting for tasks... \collaborator.py\:\178\
INFO Sending tasks to collaborator 3 for round 0 \aggregator.py\:\312\
INFO Received the following tasks: ['aggregated_model_validation', 'train', 'locally_tuned_model_validation'] \collaborator.py\:\168\
[14:12:30] INFO Using TaskRunner subclassing API \collaborator.py\:\253\
********************
Starting validation :
********************
Looping over validation data: 100%|██████████| 1/1 [00:07<00:00, 7.04s/it] Epoch Final validation loss : 1.0
Epoch Final validation dice : 0.2386646866798401
Epoch Final validation dice_per_label : [0.9437699913978577, 0.007874629460275173, 0.0030141547322273254, 2.570958582744781e-13]
[14:12:37] INFO 1.0 \fets_challenge_model.py\:\48\
INFO {'dice': 0.2386646866798401, 'dice_per_label': [0.9437699913978577, 0.007874629460275173, 0.0030141547322273254, \fets_challenge_model.py\:\49\
2.570958582744781e-13]}
METRIC Round 0, collaborator 3 is sending metric for task aggregated_model_validation: valid_loss 1.000000 \collaborator.py\:\416\
METRIC Round 0, collaborator 3 is sending metric for task aggregated_model_validation: valid_dice 0.238665 \collaborator.py\:\416\
METRIC Round 0, collaborator 3 is sending metric for task aggregated_model_validation: valid_dice_per_label_0 0.943770 \collaborator.py\:\416\
METRIC Round 0, collaborator 3 is sending metric for task aggregated_model_validation: valid_dice_per_label_1 0.007875 \collaborator.py\:\416\
METRIC Round 0, collaborator 3 is sending metric for task aggregated_model_validation: valid_dice_per_label_2 0.003014 \collaborator.py\:\416\
METRIC Round 0, collaborator 3 is sending metric for task aggregated_model_validation: valid_dice_per_label_4 0.000000 \collaborator.py\:\416\
INFO Collaborator 3 is sending task results for aggregated_model_validation, round 0 \aggregator.py\:\486\
METRIC Round 0, collaborator validate_agg aggregated_model_validation result valid_loss: 1.000000 \aggregator.py\:\531\
METRIC Round 0, collaborator validate_agg aggregated_model_validation result valid_dice: 0.238665 \aggregator.py\:\531\
METRIC Round 0, collaborator validate_agg aggregated_model_validation result valid_dice_per_label_0: 0.943770 \aggregator.py\:\531\
METRIC Round 0, collaborator validate_agg aggregated_model_validation result valid_dice_per_label_1: 0.007875 \aggregator.py\:\531\
METRIC Round 0, collaborator validate_agg aggregated_model_validation result valid_dice_per_label_2: 0.003014 \aggregator.py\:\531\
METRIC Round 0, collaborator validate_agg aggregated_model_validation result valid_dice_per_label_4: 0.000000 \aggregator.py\:\531\
[14:12:38] INFO Using TaskRunner subclassing API \collaborator.py\:\253\
INFO Run 0 epoch of 0 round \fets_challenge_model.py\:\143\
********************
Starting Training :
********************
Looping over training data: 0%| | 0/80 [00:00<?, ?it/s]/home/manthe/anaconda3/envs/fets2022_env/lib/python3.7/site-packages/torchio/data/queue.py:215: RuntimeWarning: Queue length (100) not divisible by the number of patches per volume (40)
warnings.warn(message, RuntimeWarning)
Looping over training data: 100%|██████████| 80/80 [00:49<00:00, 1.63it/s] Epoch Final Train loss : 1.0
Epoch Final Train dice : 0.2305977862328291
Epoch Final Train dice_per_label : [0.8688250705599785, 0.004667150774294626, 0.048898923238084535, 6.210030775201381e-12]
[14:13:27] METRIC Round 0, collaborator 3 is sending metric for task train: loss 1.000000 \collaborator.py\:\416\
METRIC Round 0, collaborator 3 is sending metric for task train: train_dice 0.230598 \collaborator.py\:\416\
METRIC Round 0, collaborator 3 is sending metric for task train: train_dice_per_label_0 0.868825 \collaborator.py\:\416\
METRIC Round 0, collaborator 3 is sending metric for task train: train_dice_per_label_1 0.004667 \collaborator.py\:\416\
METRIC Round 0, collaborator 3 is sending metric for task train: train_dice_per_label_2 0.048899 \collaborator.py\:\416\
METRIC Round 0, collaborator 3 is sending metric for task train: train_dice_per_label_4 0.000000 \collaborator.py\:\416\
INFO Collaborator 3 is sending task results for train, round 0 \aggregator.py\:\486\
METRIC Round 0, collaborator metric train result loss: 1.000000 \aggregator.py\:\531\
METRIC Round 0, collaborator metric train result train_dice: 0.230598 \aggregator.py\:\531\
METRIC Round 0, collaborator metric train result train_dice_per_label_0: 0.868825 \aggregator.py\:\531\
METRIC Round 0, collaborator metric train result train_dice_per_label_1: 0.004667 \aggregator.py\:\531\
METRIC Round 0, collaborator metric train result train_dice_per_label_2: 0.048899 \aggregator.py\:\531\
METRIC Round 0, collaborator metric train result train_dice_per_label_4: 0.000000 \aggregator.py\:\531\
[14:13:28] INFO Using TaskRunner subclassing API \collaborator.py\:\253\
********************
Starting validation :
********************
Looping over validation data: 100%|██████████| 1/1 [00:06<00:00, 6.98s/it] Epoch Final validation loss : 1.0
Epoch Final validation dice : 0.24105004966259003
Epoch Final validation dice_per_label : [0.9601203799247742, 0.0006217751652002335, 0.0034580088686197996, 3.5011449577189435e-13]
[14:13:35] INFO 1.0 \fets_challenge_model.py\:\48\
INFO {'dice': 0.24105004966259003, 'dice_per_label': [0.9601203799247742, 0.0006217751652002335, \fets_challenge_model.py\:\49\
0.0034580088686197996, 3.5011449577189435e-13]}
METRIC Round 0, collaborator 3 is sending metric for task locally_tuned_model_validation: valid_loss 1.000000 \collaborator.py\:\416\
METRIC Round 0, collaborator 3 is sending metric for task locally_tuned_model_validation: valid_dice 0.241050 \collaborator.py\:\416\
METRIC Round 0, collaborator 3 is sending metric for task locally_tuned_model_validation: valid_dice_per_label_0 0.960120 \collaborator.py\:\416\
METRIC Round 0, collaborator 3 is sending metric for task locally_tuned_model_validation: valid_dice_per_label_1 0.000622 \collaborator.py\:\416\
METRIC Round 0, collaborator 3 is sending metric for task locally_tuned_model_validation: valid_dice_per_label_2 0.003458 \collaborator.py\:\416\
METRIC Round 0, collaborator 3 is sending metric for task locally_tuned_model_validation: valid_dice_per_label_4 0.000000 \collaborator.py\:\416\
INFO Collaborator 3 is sending task results for locally_tuned_model_validation, round 0 \aggregator.py\:\486\
METRIC Round 0, collaborator validate_local locally_tuned_model_validation result valid_loss: 1.000000 \aggregator.py\:\531\
METRIC Round 0, collaborator validate_local locally_tuned_model_validation result valid_dice: 0.241050 \aggregator.py\:\531\
METRIC Round 0, collaborator validate_local locally_tuned_model_validation result valid_dice_per_label_0: 0.960120 \aggregator.py\:\531\
METRIC Round 0, collaborator validate_local locally_tuned_model_validation result valid_dice_per_label_1: 0.000622 \aggregator.py\:\531\
METRIC Round 0, collaborator validate_local locally_tuned_model_validation result valid_dice_per_label_2: 0.003458 \aggregator.py\:\531\
METRIC Round 0, collaborator validate_local locally_tuned_model_validation result valid_dice_per_label_4: 0.000000 \aggregator.py\:\531\
INFO All tasks completed on 3 for round 0... \collaborator.py\:\171\
INFO Collaborator 3 took simulated time: 7.08 minutes \experiment.py\:\476\
INFO Waiting for tasks... \collaborator.py\:\178\
INFO Sending tasks to collaborator 2 for round 0 \aggregator.py\:\312\
INFO Received the following tasks: ['aggregated_model_validation', 'train', 'locally_tuned_model_validation'] \collaborator.py\:\168\
[14:13:36] INFO Using TaskRunner subclassing API \collaborator.py\:\253\
********************
Starting validation :
********************
Looping over validation data: 100%|██████████| 1/1 [00:07<00:00, 7.02s/it] Epoch Final validation loss : 0.8570630550384521
Epoch Final validation dice : 0.2770087718963623
Epoch Final validation dice_per_label : [0.9444660544395447, 0.00011090079351561144, 0.020521221682429314, 0.14293694496154785]
[14:13:43] INFO 0.8570630550384521 \fets_challenge_model.py\:\48\
INFO {'dice': 0.2770087718963623, 'dice_per_label': [0.9444660544395447, 0.00011090079351561144, 0.020521221682429314, \fets_challenge_model.py\:\49\
0.14293694496154785]}
METRIC Round 0, collaborator 2 is sending metric for task aggregated_model_validation: valid_loss 0.857063 \collaborator.py\:\416\
METRIC Round 0, collaborator 2 is sending metric for task aggregated_model_validation: valid_dice 0.277009 \collaborator.py\:\416\
METRIC Round 0, collaborator 2 is sending metric for task aggregated_model_validation: valid_dice_per_label_0 0.944466 \collaborator.py\:\416\
METRIC Round 0, collaborator 2 is sending metric for task aggregated_model_validation: valid_dice_per_label_1 0.000111 \collaborator.py\:\416\
METRIC Round 0, collaborator 2 is sending metric for task aggregated_model_validation: valid_dice_per_label_2 0.020521 \collaborator.py\:\416\
METRIC Round 0, collaborator 2 is sending metric for task aggregated_model_validation: valid_dice_per_label_4 0.142937 \collaborator.py\:\416\
INFO Collaborator 2 is sending task results for aggregated_model_validation, round 0 \aggregator.py\:\486\
METRIC Round 0, collaborator validate_agg aggregated_model_validation result valid_loss: 0.857063 \aggregator.py\:\531\
METRIC Round 0, collaborator validate_agg aggregated_model_validation result valid_dice: 0.277009 \aggregator.py\:\531\
METRIC Round 0, collaborator validate_agg aggregated_model_validation result valid_dice_per_label_0: 0.944466 \aggregator.py\:\531\
METRIC Round 0, collaborator validate_agg aggregated_model_validation result valid_dice_per_label_1: 0.000111 \aggregator.py\:\531\
METRIC Round 0, collaborator validate_agg aggregated_model_validation result valid_dice_per_label_2: 0.020521 \aggregator.py\:\531\
METRIC Round 0, collaborator validate_agg aggregated_model_validation result valid_dice_per_label_4: 0.142937 \aggregator.py\:\531\
INFO Using TaskRunner subclassing API \collaborator.py\:\253\
INFO Run 0 epoch of 0 round
The number of epochs per round seems to be used, as stated in the beginning of the trace:
INFO Hyper-parameters for round 0: \experiment.py\:\424\
learning rate: 5e-05
epochs_per_round: 2.0
However, it doesn't seem to happen during training (same training time, number of patches, etc.)... (Same if epochs_per_round = int(2))
Is it occurring but hidden by the interface? Is it just a behaviour with the small_split? Am I doing something wrong? Can't we modify the number of epochs_per_round? Or is it a bug?
reacted with thumbs up emoji reacted with thumbs down emoji reacted with laugh emoji reacted with hooray emoji reacted with confused emoji reacted with heart emoji reacted with rocket emoji reacted with eyes emoji
-
Hi,
I am working on Task 1 of FeTS2022 Challenge, and I have trouble validating the fact that modifying the "epochs_per_round" value outputted by the "constant_hyper_parameters" function given to the "run_challenge_experiment" function is actually doing something.
The steps I followed:
Thus the functions given as parameters of the "run_experiment_challenge" function are, as initially given:
This gives, for any round (not only round 0):
Which is the desired behaviour: collaborator 3 trains for 1.0 epochs on the 2 data points with 40 patches each (am I right on this ?).
However, if a change the function like this (literally just modifying the given values for epochs_per_round from 1.0 to 2.0):
I still have the same results on the "small_split.csv" partitioning.
The number of epochs per round seems to be used, as stated in the beginning of the trace:
However, it doesn't seem to happen during training (same training time, number of patches, etc.)... (Same if epochs_per_round = int(2))
Is it occurring but hidden by the interface? Is it just a behaviour with the small_split? Am I doing something wrong? Can't we modify the number of epochs_per_round? Or is it a bug?
Does anyone observe the same behaviour?
Thank you very much for your help,
All the best,
Matthis.
Beta Was this translation helpful? Give feedback.
All reactions