-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
126 lines (92 loc) · 4.44 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import os
import pprint
from collections import OrderedDict, defaultdict
import sys
import numpy as np
import torch
from torch.utils.data import DataLoader
import time
from torch import nn, optim
from batch_engine import valid_trainer
from config import argument_parser
from dataset.AttrDataset import MultiModalAttrDataset, get_transform
from loss.CE_loss import *
from models.base_block import *
from tools.function import get_pedestrian_metrics, get_signle_metrics
from tools.utils import time_str, save_ckpt, ReDirectSTD, set_seed, select_gpus
import torch.nn.functional as F
from CLIP.clip import clip
from CLIP.clip.model import *
from tensorboardX import SummaryWriter
import torch.distributed as dist
import torch.nn.parallel
from torch.utils.data.distributed import DistributedSampler
from peft import LoraConfig, get_peft_model,AdaLoraConfig
def main(args):
ViT_model, ViT_preprocess = clip.load("ViT-B/16", device=device,download_root='/media/amax/c08a625b-023d-436f-b33e-9652dc1bc7c0/DATA/yanghaoxiang/VBT/model')
Event_ViT_model,Event_ViT_preprocess = clip.load("ViT-B/16", device=device,download_root='/media/amax/c08a625b-023d-436f-b33e-9652dc1bc7c0/DATA/yanghaoxiang/VBT/model')
frame_ViT_model,frame_ViT_preprocess = clip.load("ViT-B/16", device=device,download_root='/media/amax/c08a625b-023d-436f-b33e-9652dc1bc7c0/DATA/yanghaoxiang/VBT/model')
lora_config_ViT_model = LoraConfig(
r=4,
lora_alpha=8,
# target_modules=["out_proj","c_fc","c_proj"],
target_modules=["c_fc","c_proj"],
#在这里怎么确定需要加的模块?
lora_dropout=0.01,
task_type="TOKEN_CLS",
bias="none"
)
ViT_model = get_peft_model(ViT_model,lora_config_ViT_model)
Event_ViT_model = get_peft_model(Event_ViT_model,lora_config_ViT_model)
frame_ViT_model = get_peft_model(frame_ViT_model,lora_config_ViT_model)
ViT_model = ViT_model.float()
Event_ViT_model = Event_ViT_model.float()
frame_ViT_model = frame_ViT_model.float()
ViT_model = ViT_model.to(args.local_rank)
Event_ViT_model = Event_ViT_model.to(args.local_rank)
frame_ViT_model = frame_ViT_model.to(args.local_rank)
dist.init_process_group(backend='nccl')
torch.cuda.set_device(args.local_rank)
valid_tsfm = get_transform(args)[1]
valid_set = MultiModalAttrDataset(args=args, split=args.valid_split, transform=valid_tsfm)
valid_sampler = DistributedSampler(valid_set)
valid_loader = DataLoader(
dataset=valid_set,
batch_size=args.batchsize,
shuffle=False,
num_workers=8,
pin_memory=True,
sampler=valid_sampler
)
model = TransformerClassifier(valid_set.attr_num, attr_words=valid_set.attributes)
model = torch.nn.parallel.DistributedDataParallel(model.cuda(), find_unused_parameters=True)
checkpoint = torch.load('/media/amax/c08a625b-023d-436f-b33e-9652dc1bc7c0/DATA/yanghaoxiang/VBT/poker_frame8_checkpoint/best_checkpoint.pth',map_location='cuda:0')
#可视化
#checkpoint = torch.load('/media/amax/836e911f-c5c3-4c4b-91f2-41bb8f3f5cb6/DATA/lidong/VTF_PAR-main/Visualization/VTF/best_checkpoint.pth',map_location='cuda:0')
model.load_state_dict(checkpoint['model_state_dict'], strict=False)
ViT_model.load_state_dict(checkpoint['ViT_model_state_dict'], strict=False)
Event_ViT_model.load_state_dict(checkpoint['Event_ViT_model_state_dict'],strict=False)
frame_ViT_model.load_state_dict(checkpoint['frame_ViT_model_state_dict'],strict=False)
criterion = nn.CrossEntropyLoss()
valid_loss, valid_gt, valid_probs = valid_trainer(
epoch=1,
model=model,
ViT_model=ViT_model,
Event_ViT_model=Event_ViT_model,
frame_ViT_model=frame_ViT_model,
valid_loader=valid_loader,
criterion=criterion,
)
if args.dataset == 'MARS':
valid_preds = valid_probs.argmax(axis=1)
valid_gt = valid_gt.argmax(axis=1)
valid_correct_predictions = (valid_preds == valid_gt).sum()
valid_accuracy = valid_correct_predictions / len(valid_gt)
#######
print('===>>valid_accuracy = ', valid_accuracy)
print('===>>Testing Complete...')
if __name__ == '__main__':
parser = argument_parser()
parser.add_argument('--local_rank', type=int, help='Local rank for distributed training')
args = parser.parse_args()
main(args)