-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbatch_engine.py
133 lines (107 loc) · 4.85 KB
/
batch_engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import time
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import torch
from torch.nn.utils import clip_grad_norm_
from tqdm import tqdm
from tools.utils import AverageMeter, to_scalar, time_str
device = "cuda" if torch.cuda.is_available() else "cpu"
img_count=0
def batch_trainer(epoch, model,ViT_model,Event_ViT_model,frame_ViT_model,train_loader, criterion, optimizer):
global img_count
model.train()
ViT_model.train()
Event_ViT_model.train()
frame_ViT_model.train()
epoch_time = time.time()
loss_meter = AverageMeter()
#prompt_loss_meter= AverageMeter()
batch_num = len(train_loader)
gt_list = []
preds_probs = []
save_name=[]
save_event_name=[]
lr = optimizer.param_groups[0]['lr']
#lr = 1e-3
print(f'learning rate whith VTB:{lr}')
for step, (imgs, gt_label, imgname, label_v, event, gt_event_label, eventname) in enumerate(train_loader):
for elem in imgname :
save_name.append(elem)#save_name长度=batchsize=32
for elem in eventname :
save_event_name.append(elem)
img_count+=imgs.shape[0]#32
batch_time = time.time()
optimizer.zero_grad()
imgs, gt_label = imgs.to(device), gt_label.to(device)
event, gt_event_label = event.to(device), gt_event_label.to(device)
# output= model(imgs, event, ViT_model=ViT_model,Event_ViT_model=Event_ViT_model,frame_ViT_model=frame_ViT_model)
output,loss_fn = model(imgs, event, ViT_model=ViT_model,Event_ViT_model=Event_ViT_model,frame_ViT_model=frame_ViT_model)
train_loss = criterion(output, gt_label)
train_loss = train_loss + loss_fn
print('==>> train_loss', train_loss)
#梯度裁剪
train_loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1)
optimizer.step()
loss_meter.update(to_scalar(train_loss))
gt_list.append(gt_label.cpu().numpy())
# train_probs = torch.sigmoid(output)
preds_probs.append(output.detach().cpu().numpy())
log_interval = 2000
if (step + 1) % log_interval == 0 or (step + 1) % len(train_loader) == 0:
print(f'{time_str()}, Step {step}/{batch_num} in Ep {epoch}, {(time.time() - batch_time)/imgs.shape[0]:.4f}s ',
f'train_loss:{loss_meter.val:.4f}')
train_loss = loss_meter.avg
gt_label = np.concatenate(gt_list, axis=0)
preds_probs = np.concatenate(preds_probs, axis=0)
print(f'Epoch {epoch}, LR {lr}, Train_Time {time.time() - epoch_time:.2f}s, Loss: {loss_meter.avg:.4f},img_num:{img_count}')
img_count=0
return train_loss, gt_label, preds_probs
def valid_trainer(epoch,model,ViT_model,Event_ViT_model,frame_ViT_model,valid_loader, criterion):
model.eval()
ViT_model.eval()
Event_ViT_model.eval()
frame_ViT_model.eval()
loss_meter = AverageMeter()
preds_probs = []
gt_list = []
save_name=[]
save_event_name=[]
features = []
with torch.no_grad():
for step, (imgs, gt_label, imgname, label_v, event, gt_event_label, eventname) in enumerate(valid_loader):
for elem in imgname :
save_name.append(elem)#save_name长度=batchsize=32
for elem in eventname :
save_event_name.append(elem)
imgs = imgs.cuda()
gt_label, gt_event_label = gt_label.cuda(),gt_event_label.cuda()
gt_list.append(gt_label.cpu().numpy())
output,loss_fn = model(imgs, event, ViT_model=ViT_model,Event_ViT_model=Event_ViT_model,frame_ViT_model=frame_ViT_model)
# output = model(imgs, event, ViT_model=ViT_model,Event_ViT_model=Event_ViT_model,frame_ViT_model=frame_ViT_model)
# 归一化
min_val = output.min()
max_val = output.max()
normalized_data = (output - min_val) / (max_val - min_val)
# #可视化保存
features.append(normalized_data.cpu().numpy())
#valid_loss = F.binary_cross_entropy_with_logits(output, gt_label)
#breakpoint()
valid_loss = criterion(output, gt_label)
valid_loss = valid_loss + loss_fn
#print('==>> valid_loss', valid_loss)
# valid_probs = torch.sigmoid(output)
preds_probs.append(output.cpu().numpy())
loss_meter.update(to_scalar(valid_loss))
# #可视化保存
features = np.concatenate(features)
labels = np.concatenate(gt_list, axis=0)
np.savetxt('mnist2500_X.txt', features)
np.savetxt('mnist2500.txt', labels)
valid_loss = loss_meter.avg
#breakpoint()
gt_label = np.concatenate(gt_list, axis=0)
preds_probs = np.concatenate(preds_probs, axis=0)
# return valid_loss, gt_label, preds_probs,save_name
return valid_loss, gt_label, preds_probs