-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmetagenomesimulation.py
executable file
·872 lines (763 loc) · 39.2 KB
/
metagenomesimulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
#!/usr/bin/env python
__author__ = 'peter hofmann'
__version__ = '0.0.6'
import sys
import os
import shutil
import traceback
import tempfile
from Bio import SeqIO
from fastaanonymizer import FastaAnonymizer
from scripts.Archive.compress import Compress
from scripts.argumenthandler import ArgumentHandler
from scripts.ComunityDesign.communitydesign import CommunityDesign
from scripts.ComunityDesign.taxonomicprofile import TaxonomicProfile
from scripts.GenomePreparation.genomepreparation import GenomePreparation
from scripts.GoldStandardAssembly.goldstandardassembly import GoldStandardAssembly
from scripts.GoldStandardAssembly.samtoolswrapper import SamtoolsWrapper
from scripts.GoldStandardFileFormat.goldstandardfileformat import GoldStandardFileFormat
from scripts.MetaDataTable.metadatatable import MetadataTable
from scripts.NcbiTaxonomy.ncbitaxonomy import NcbiTaxonomy
from scripts.ReadSimulationWrapper.readsimulationwrapper import dict_of_read_simulators
class MetagenomeSimulation(ArgumentHandler):
"""
Pipeline for the generation of a simulated metagenome
"""
_label = "MetagenomeSimulationPipeline"
_list_tuple_archive_files = []
def run_pipeline(self):
"""
Run pipeline
@rtype: None
"""
if not self.is_valid():
self._logger.info("Metagenome simulation aborted")
return
self._logger.info("Metagenome simulation starting")
try:
# Validate Genomes
if self._phase_validate_raw_genomes:
self._logger.info("Validating Genomes")
self._validate_raw_genomes()
# Design Communities
if self._input_list_of_file_paths_distributions:
assert len(self._input_list_of_file_paths_distributions) == self._number_of_samples
meta_data_table = MetadataTable(separator=self._separator, logfile=self._logfile, verbose=self._verbose)
file_path_genome_locations = self._project_file_folder_handler.get_genome_location_file_path()
for community in self._list_of_communities:
meta_data_table.read(community.file_path_metadata_table, column_names=True)
file_path_metadata = self._project_file_folder_handler.get_genome_metadata_file_path()
meta_data_table.write(file_path_metadata, column_names=True)
out_locations = {}
# collect all paths
with open(community.file_path_genome_locations,'r') as in_locations:
for line in in_locations:
genome, path = line.strip().split('\t')
out_locations[genome] = path
# might overwrite path for genomes appearing multiple times and having been assigned different genomes
# and write complete collection, so no genome appears multiple times
with open(file_path_genome_locations, 'a') as locations:
for gen_id in out_locations:
locations.write("%s\t%s\n" % (gen_id, out_locations[gen_id]))
genome_id_to_path_map = self.get_dict_gid_to_genome_file_path()
directory_out_distributions = self._project_file_folder_handler.get_distribution_dir()
list_of_file_paths_distributions = CommunityDesign.get_distribution_file_paths(
directory_out_distributions, self._number_of_samples)
for file_path_src, file_path_dst in zip(self._input_list_of_file_paths_distributions, list_of_file_paths_distributions):
shutil.copy2(file_path_src, file_path_dst)
self.write_profile_gold_standard(meta_data_table, list_of_file_paths_distributions)
elif self._phase_design_community:
self._logger.info("Design Communities")
genome_id_to_path_map, list_of_file_paths_distributions = self._design_community()
else:
genome_id_to_path_map = self.get_dict_gid_to_genome_file_path()
directory_out_distributions = self._project_file_folder_handler.get_distribution_dir()
list_of_file_paths_distributions = CommunityDesign.get_distribution_file_paths(
directory_out_distributions, self._number_of_samples)
# Move Genomes
if self._phase_move_and_clean_genomes:
self._logger.info("Move Genomes")
self._move_and_cleanup_genomes(genome_id_to_path_map)
# Read simulation (Art Illumina)
if self._phase_simulate_reads:
self._logger.info("Read simulation")
for sample_index, file_path_distribution in enumerate(list_of_file_paths_distributions):
self._simulate_reads(file_path_distribution, sample_index)
# Generate gold standard assembly
list_of_output_gsa = None
file_path_output_gsa_pooled = None
if self._phase_pooled_gsa:
self._logger.info("Generate gold standard assembly")
list_of_output_gsa = self._generate_gsa()
# Generate gold standard assembly from pooled reads of all samples
if self._phase_pooled_gsa:
self._logger.info("Generate pooled strains gold standard assembly")
file_path_output_gsa_pooled = self._generate_gsa_pooled()
# Anonymize Data (gsa)
if self._phase_anonymize:
self._logger.info("Anonymize Data")
self._logger.debug(", ".join(list_of_output_gsa))
self._anonymize_data(list_of_output_gsa, file_path_output_gsa_pooled)
#elif self._phase_pooled_gsa:
else: # in any case create binning gold standard
self._logger.info("Creating binning gold standard")
self._logger.debug(", ".join(list_of_output_gsa))
self._create_binning_gs(list_of_output_gsa)
# Compress Data
if self._phase_compress:
self._logger.info("Compress Data")
self._compress_data()
except (KeyboardInterrupt, SystemExit, Exception, ValueError, RuntimeError) as e:
self._logger.debug("\n{}\n".format(traceback.format_exc()))
exc_tb = sys.exc_info()[-1]
self._logger.error("%s in line %s" % (e, exc_tb.tb_lineno))
self._logger.info("Metagenome simulation aborted")
except AssertionError:
self._logger.info("Metagenome simulation aborted, assertion %s failed" % e)
else:
self._logger.info("Metagenome simulation finished")
if not self._debug:
self._project_file_folder_handler.remove_directory_temp()
else:
self._logger.info("Temporary data stored at:\n{}".format(self._project_file_folder_handler.get_tmp_wd()))
# #########################
#
# Validate Genomes
#
# #########################
def _validate_raw_genomes(self):
"""
Validate format raw genomes
@return: True if all genomes valid
@rtype: bool
"""
prepare_genomes = GenomePreparation(
logfile=self._logfile,
verbose=self._verbose)
meta_data_table = MetadataTable(
separator=self._separator,
logfile=self._logfile,
verbose=self._verbose)
are_valid = True
for community in self._list_of_communities:
meta_data_table.read(community.file_path_genome_locations)
list_of_file_paths = meta_data_table.get_column(1)
if not prepare_genomes.validate_format(
list_of_file_paths,
file_format="fasta", # TODO: should be done dynamically
sequence_type="dna",
ambiguous=True):
are_valid = False
return are_valid
# #########################
#
# Design Communities
#
# #########################
def write_profile_gold_standard(self, meta_data_table, list_of_file_paths_distribution):
taxonomy = NcbiTaxonomy(
taxonomy_path=self._directory_ncbi_taxdump,
build_node_tree=False,
verbose=self._verbose,
logfile=self._logfile
)
taxonomic_profile = TaxonomicProfile(
taxonomy=taxonomy,
logfile=self._logfile,
verbose=self._verbose,
debug=self._debug
)
taxonomic_profile.write_taxonomic_profile_from_abundance_files(
metadata_table=meta_data_table,
list_of_file_paths=list_of_file_paths_distribution,
directory_output=self._directory_output,
sample_id=""
)
def get_dict_gid_to_genome_file_path(self):
"""
Get map genome id to genome file path
@return: Genome id to geone file path
@rtype: dict[str|unicode, str|unicode]
"""
meta_data_table = MetadataTable(
separator=self._separator,
logfile=self._logfile,
verbose=self._verbose)
file_path_genome_locations = self._project_file_folder_handler.get_genome_location_file_path()
if not self._validator.validate_file(file_path_genome_locations, silent=True):
msg = "Required file not found! Was design of communities not completed?"
raise RuntimeError(msg)
meta_data_table.read(file_path_genome_locations)
return meta_data_table.get_map(0, 1)
def _design_community(self):
"""
Start designing sample a community
@return: map genome id to genome file path and list of distribution file paths
@rtype: tuple[dict[str|unicode, str|unicode], list[str|unicode]]]
"""
meta_data_table = MetadataTable(
separator=self._separator,
logfile=self._logfile,
verbose=self._verbose)
community_design = CommunityDesign(
column_name_genome_id=self._column_name_genome_id,
column_name_otu=self._column_name_otu,
column_name_novelty_category=self._column_name_novelty_category,
column_name_ncbi=self._column_name_ncbi,
column_name_source=self._column_name_source,
max_processors=self._max_processors,
tmp_dir=self._project_file_folder_handler.get_tmp_wd(),
logfile=self._logfile,
verbose=self._verbose,
debug=self._debug,
seed=None
)
directory_out_distributions = self._project_file_folder_handler.get_distribution_dir()
list_of_file_paths_distribution = community_design.get_distribution_file_paths(
directory_out_distributions, self._number_of_samples)
directory_out_metadata = self._project_file_folder_handler.get_meta_data_dir()
directory_simulation_template = self._strain_simulation_template
merged_genome_id_to_path_map = community_design.design_samples(
list_of_communities=self._list_of_communities,
metadata_table=meta_data_table,
list_of_file_paths_distribution=list_of_file_paths_distribution,
directory_out_metadata=directory_out_metadata,
directory_in_template=directory_simulation_template)
# directory_out_distributions=directory_out_distributions,
self.write_profile_gold_standard(meta_data_table, list_of_file_paths_distribution)
file_path_metadata = self._project_file_folder_handler.get_genome_metadata_file_path()
meta_data_table.write(file_path_metadata, column_names=True)
return merged_genome_id_to_path_map, list_of_file_paths_distribution
# #########################
#
# Move Genomes
#
# #########################
def _move_and_cleanup_genomes(self, genome_id_to_path_map):
"""
Move genomes, removing sequence descriptions and making sequence names unique
@param genome_id_to_path_map: A map of genome id to genome file path
@type genome_id_to_path_map: dict[str|unicode, str|unicode]
@rtype: None
"""
prepare_genomes = GenomePreparation(
logfile=self._logfile,
verbose=self._verbose)
directory_output = self._project_file_folder_handler.get_genome_dir()
prepare_genomes.move_genome_files(
genome_id_to_path_map=genome_id_to_path_map,
directory_output=directory_output
# sequence_min_length=1000 TODO
)
file_path_genome_locations = self._project_file_folder_handler.get_genome_location_file_path()
prepare_genomes.write_genome_id_to_path_map(genome_id_to_path_map, file_path_genome_locations)
# #########################
#
# Read simulation (Art Illumina)
#
# #########################
def _simulate_reads(self, file_path_distribution, sample_index):
"""
Start the simulation of illumina reads
@param file_path_distribution: File path to a distribution
@type file_path_distribution: str | unicode
@param sample_index: Sample index
@type sample_index: int | long
@rtype: None
"""
self._project_file_folder_handler._location_reads = [True, True] # TODO write public method for this
sample_id = str(sample_index)
directory_output_tmp = self._project_file_folder_handler.get_reads_dir(True, sample_id)
directory_bam = self._project_file_folder_handler.get_bam_dir(sample_id)
# directory_script = os.path.dirname(__file__)
# file_path_executable = os.path.join(directory_script, "tools", "readsimulator", "art_illumina")
# directory_error_profiles = os.path.join(directory_script, "tools", "readsimulator", "profile")
if self._read_simulator_type not in dict_of_read_simulators:
raise ValueError("Read simulator type '{}' not supported.".format(self._read_simulator_type))
simulator = dict_of_read_simulators[self._read_simulator_type](
file_path_executable=self._executable_readsim,
directory_error_profiles=self._directory_error_profiles,
separator=self._separator,
max_processes=self._max_processors,
logfile=self._logfile,
verbose=self._verbose,
debug=self._debug,
seed=None, # todo: setting seed here would cause the same seed used for every simulation
tmp_dir=self._project_file_folder_handler.get_tmp_wd())
file_path_genome_locations = self._project_file_folder_handler.get_genome_location_file_path()
if self._read_simulator_type == "art":
simulator.simulate(
file_path_distribution=file_path_distribution,
file_path_genome_locations=file_path_genome_locations,
directory_output=directory_output_tmp,
total_size=self._sample_size_in_base_pairs,
profile=self._error_profile,
fragment_size_mean=self._fragments_size_mean_in_bp,
fragment_size_standard_deviation=self._fragment_size_standard_deviation_in_bp,
profile_filename=self._custom_profile_filename,
own_read_length=self._custom_readlength)
else:
simulator.simulate(
file_path_distribution=file_path_distribution,
file_path_genome_locations=file_path_genome_locations,
directory_output=directory_output_tmp,
total_size=self._sample_size_in_base_pairs,
profile=self._error_profile,
fragment_size_mean=self._fragments_size_mean_in_bp,
fragment_size_standard_deviation=self._fragment_size_standard_deviation_in_bp)
# convert sam to bam
samtools = SamtoolsWrapper(
file_path_samtools=self._executable_samtools,
max_processes=self._max_processors,
tmp_dir=self._project_file_folder_handler.get_tmp_wd(),
logfile=self._logfile,
verbose=self._verbose,
debug=self._debug
)
directory_sam = directory_output_tmp
samtools.convert_sam_to_bam(directory_sam, directory_bam)
if not self._phase_anonymize:
list_of_file_path = self._validator.get_files_in_directory(directory_output_tmp, extension="fq")
directory_output_fastq = self._project_file_folder_handler.get_reads_dir(False, sample_id)
if self._phase_compress:
for file_path in list_of_file_path:
self._list_tuple_archive_files.append((file_path, directory_output_fastq))
else:
for file_path in list_of_file_path:
shutil.move(file_path, directory_output_fastq)
# #########################
#
# Generate gold standard assembly
#
# #########################
def _generate_gsa(self):
"""
Create a perfect assembly of the reads of each sample.
@return: List of file paths of assemblies
@rtype: list[str|unicode]
"""
dict_id_to_file_path_fasta = self.get_dict_gid_to_genome_file_path()
list_of_directory_bam = [
self._project_file_folder_handler.get_bam_dir(str(sample_index)) for sample_index in range(self._number_of_samples)]
gs_handler = GoldStandardAssembly(
file_path_samtools=self._executable_samtools,
max_processes=self._max_processors,
tmp_dir=self._project_file_folder_handler.get_tmp_wd(),
logfile=self._logfile,
verbose=self._verbose)
list_of_output_gsa = []
for directory_bam in list_of_directory_bam:
dict_id_to_file_path_bam = gs_handler.get_dict_id_to_file_path_bam_from_dir(directory_bam)
file_path_output_gs = gs_handler.gold_standard_assembly(
dict_id_to_file_path_bam=dict_id_to_file_path_bam,
dict_id_to_file_path_fasta=dict_id_to_file_path_fasta)
list_of_output_gsa.append(file_path_output_gs)
list_of_final_output_gsa = []
if not self._phase_anonymize:
for index, file_path in enumerate(list_of_output_gsa):
file_path_output = self._project_file_folder_handler.get_gsa_file_path(str(index))
if self._phase_compress:
self._list_tuple_archive_files.append((file_path, file_path_output+".gz"))
else:
shutil.move(file_path, file_path_output)
list_of_final_output_gsa.append(file_path_output)
if not self._phase_compress:
list_of_output_gsa = list_of_final_output_gsa
return list_of_output_gsa
def _generate_gsa_pooled(self):
"""
Create a perfect assembly of the reads of all samples.
merge all sample bam files and create a assembly of all of them
- create folder reads_on_genomes wherever you are
- merge bamfiles from list_of_bamdirs into this dirs
- run gsa for reads_on_genomes
- create mapping
@return: file paths of assembly
@rtype: str|unicode
"""
meta_data_table = MetadataTable(
separator=self._separator,
logfile=self._logfile,
verbose=self._verbose)
gs_handler = GoldStandardAssembly(
file_path_samtools=self._executable_samtools,
max_processes=self._max_processors,
tmp_dir=self._project_file_folder_handler.get_tmp_wd(),
logfile=self._logfile,
verbose=self._verbose)
file_path_genome_locations = self._project_file_folder_handler.get_genome_location_file_path()
meta_data_table.read(file_path_genome_locations)
dict_id_to_file_path_fasta = meta_data_table.get_map(0, 1)
# list_of_directory_bam = [
# self._project_file_folder_handler.get_bam_dir(str(sample_index))
# for sample_index in range(self._number_of_samples)]
list_of_directory_bam = self._project_file_folder_handler.get_bam_dirs()
list_of_sample_folders = [os.path.basename(os.path.dirname(directory_bam)) for directory_bam in list_of_directory_bam]
self._logger.info("Samples used for pooled assembly: '{}'".format("', '".join(list_of_sample_folders)))
file_path_output_gsa_pooled = gs_handler.pooled_gold_standard_by_dir(
list_of_directory_bam, dict_id_to_file_path_fasta)
if not self._phase_anonymize:
gsa_pooled_output = self._project_file_folder_handler.get_gsa_pooled_file_path()
if self._phase_compress:
self._list_tuple_archive_files.append((file_path_output_gsa_pooled, gsa_pooled_output+".gz"))
else:
shutil.move(file_path_output_gsa_pooled, gsa_pooled_output)
return file_path_output_gsa_pooled
def _create_binning_gs(self, list_of_output_gsa):
"""
Create binning gold standard without anonymization first
@param list_of_output_gsa: List of file paths of assemblies
@type list_of_output_gsa: list[str|unicode]
@param file_path_output_gsa_pooled: file paths of assembly from all samples
@type file_path_output_gsa_pooled: str | unicode
@rtype: None
"""
gff = GoldStandardFileFormat(logfile = self._logfile, verbose = self._verbose)
# read-based binning
file_path_metadata = self._project_file_folder_handler.get_genome_metadata_file_path()
file_path_genome_locations = self._project_file_folder_handler.get_genome_location_file_path()
dict_sequence_to_genome_id = gff.get_dict_sequence_to_genome_id(file_path_genome_locations)
dict_genome_id_to_tax_id = gff.get_dict_genome_id_to_tax_id(file_path_metadata)
directories_fastq_dir_in = [
self._project_file_folder_handler.get_reads_dir(True, str(sample_index))
for sample_index in range(self._number_of_samples)]
if (self._read_simulator_type == "art" or self._read_simulator_type == "wgsim"):
paired_end = True
else:
paired_end = False
for sample_index in range(self._number_of_samples):
sample_id = str(sample_index)
readfiles = directories_fastq_dir_in[sample_index]
if self._phase_compress:
file_path_gs_mapping = tempfile.mktemp(
dir=self._project_file_folder_handler.get_tmp_wd(),
prefix="gs_mapping")
else:
file_path_gs_mapping = self._project_file_folder_handler.get_anonymous_reads_map_file_path(sample_id)
samtools = SamtoolsWrapper(
file_path_samtools=self._executable_samtools,
max_processes=self._max_processors,
tmp_dir=self._project_file_folder_handler.get_tmp_wd(),
logfile=self._logfile,
verbose=self._verbose,
debug=self._debug
)
list_file_paths_read_positions = [
samtools.read_start_positions_from_dir_of_bam(self._project_file_folder_handler.get_bam_dir(sample_id))
]
dict_original_seq_pos = gff.get_dict_sequence_name_to_positions(list_file_paths_read_positions)
with open(file_path_gs_mapping, 'w') as stream_output:
row_format = "{aid}\t{gid}\t{tid}\t{sid}\n"
line = '#' + row_format.format(
aid="anonymous_read_id",
gid="genome_id",
tid="tax_id",
sid="read_id")
stream_output.write(line)
for read in dict_original_seq_pos:
seq_id = read.strip().split(' ')[0]
gen_id = read.strip().split('-')[0]
genome_id = dict_sequence_to_genome_id[gen_id]
tax_id = dict_genome_id_to_tax_id[genome_id]
line = row_format.format(
aid=seq_id,
gid=genome_id,
tid=tax_id,
sid=seq_id,
)
stream_output.write(line)
if self._phase_compress:
self._list_tuple_archive_files.append(
(file_path_gs_mapping, self._project_file_folder_handler.get_anonymous_reads_map_file_path(sample_id)+".gz"))
if self._phase_compress:
file_path_gsa_mapping = tempfile.mktemp(
dir=self._project_file_folder_handler.get_tmp_wd(),
prefix="anonymous_gsa_mapping")
else:
file_path_gsa_mapping = self._project_file_folder_handler.get_anonymous_gsa_map_file_path(sample_id)
samtools = SamtoolsWrapper(
file_path_samtools=self._executable_samtools,
max_processes=self._max_processors,
tmp_dir=self._project_file_folder_handler.get_tmp_wd(),
logfile=self._logfile,
verbose=self._verbose,
debug=self._debug
)
list_file_paths_read_positions = [
samtools.read_start_positions_from_dir_of_bam(self._project_file_folder_handler.get_bam_dir(sample_id))
]
dict_original_seq_pos = gff.get_dict_sequence_name_to_positions(list_file_paths_read_positions)
file_path_output_anonymous_gsa_out = self._project_file_folder_handler.get_anonymous_gsa_file_path(sample_id)
gsa = list_of_output_gsa[sample_index]
with open(gsa, 'r') as gs:
with open(file_path_gsa_mapping, 'w') as stream_output:
row_format = "{name}\t{genome_id}\t{tax_id}\t{length}\n"
stream_output.write("@@SEQUENCEID\tBINID\tTAXID\t_LENGTH\n")
for seq_id in gs:
if not seq_id.startswith(">"):
continue
seq_id = seq_id[1:].strip()
seq_info = seq_id.rsplit("_from_", 1)
# print(seq_info)
sequence_id = seq_info[0]
# pos_start, pos_end = re.findall(r'\d+', seq_info[1])[:2]
pos_start = int(seq_info[1].split("_", 1)[0])
pos_end = int(seq_info[1].split("_to_", 1)[1].split("_", 1)[0])
genome_id = dict_sequence_to_genome_id[sequence_id]
tax_id = dict_genome_id_to_tax_id[genome_id]
stream_output.write(row_format.format(
name=seq_id,
genome_id=genome_id,
tax_id=tax_id,
length=str(pos_end-pos_start+1)
)
)
if self._phase_compress:
self._list_tuple_archive_files.append(
(file_path_gsa_mapping, self._project_file_folder_handler.get_anonymous_gsa_map_file_path(sample_id)))
else:
shutil.move(file_path_gsa_mapping, file_path_output_anonymous_gsa_out)
# #########################
#
# Anonymize Data
#
# #########################
def _anonymize_data(self, list_of_output_gsa, file_path_output_gsa_pooled):
"""
Anonymize reads and assemblies.
@param list_of_output_gsa: List of file paths of assemblies
@type list_of_output_gsa: list[str|unicode]
@param file_path_output_gsa_pooled: file paths of assembly from all samples
@type file_path_output_gsa_pooled: str | unicode
@rtype: None
"""
gs_mapping = GoldStandardFileFormat(
column_name_gid=self._column_name_genome_id,
column_name_ncbi=self._column_name_ncbi,
separator=self._separator,
logfile=self._logfile,
verbose=self._verbose
)
file_path_metadata = self._project_file_folder_handler.get_genome_metadata_file_path()
directories_fastq_dir_in = [
self._project_file_folder_handler.get_reads_dir(True, str(sample_index))
for sample_index in range(self._number_of_samples)]
if (self._read_simulator_type == "art" or self._read_simulator_type == "wgsim"):
paired_end = True
else:
paired_end = False
file_path_genome_locations = self._project_file_folder_handler.get_genome_location_file_path()
for sample_index in range(self._number_of_samples):
file_path_anonymous_reads_tmp, file_path_anonymous_mapping_tmp = self._anonymize_reads(
directories_fastq_dir_in[sample_index],
"S{}R".format(sample_index),
paired_end)
sample_id = str(sample_index)
file_path_anonymous_reads_out = self._project_file_folder_handler.get_anonymous_reads_file_path(sample_id)
file_path_anonymous_gs_mapping_out = self._project_file_folder_handler.get_anonymous_reads_map_file_path(sample_id)
if self._phase_compress:
file_path_anonymous_gs_mapping = tempfile.mktemp(
dir=self._project_file_folder_handler.get_tmp_wd(),
prefix="anonymous_gs_mapping")
else:
file_path_anonymous_gs_mapping = self._project_file_folder_handler.get_anonymous_reads_map_file_path(sample_id)
with open(file_path_anonymous_gs_mapping, 'w') as stream_output:
gs_mapping.gs_read_mapping(
file_path_genome_locations, file_path_metadata, file_path_anonymous_mapping_tmp, stream_output
)
if self._phase_compress:
self._list_tuple_archive_files.append(
(file_path_anonymous_reads_tmp, file_path_anonymous_reads_out+".gz"))
self._list_tuple_archive_files.append(
(file_path_anonymous_gs_mapping, file_path_anonymous_gs_mapping_out+".gz"))
else:
shutil.move(file_path_anonymous_reads_tmp, file_path_anonymous_reads_out)
if not self._phase_gsa and not self._phase_pooled_gsa:
return
samtools = SamtoolsWrapper(
file_path_samtools=self._executable_samtools,
max_processes=self._max_processors,
tmp_dir=self._project_file_folder_handler.get_tmp_wd(),
logfile=self._logfile,
verbose=self._verbose,
debug=self._debug
)
if self._phase_gsa:
for sample_index in range(self._number_of_samples):
file_path_output_anonymous_gsa, file_path_anonymous_mapping_tmp = self._anonymize_gsa(
list_of_output_gsa[sample_index],
"S{}C".format(sample_index))
sample_id = str(sample_index)
file_path_output_anonymous_gsa_out = self._project_file_folder_handler.get_anonymous_gsa_file_path(sample_id)
file_path_anonymous_gsa_mapping_out = self._project_file_folder_handler.get_anonymous_gsa_map_file_path(sample_id)
if self._phase_compress:
file_path_anonymous_gsa_mapping = tempfile.mktemp(
dir=self._project_file_folder_handler.get_tmp_wd(),
prefix="anonymous_gsa_mapping")
else:
file_path_anonymous_gsa_mapping = self._project_file_folder_handler.get_anonymous_gsa_map_file_path(sample_id)
list_file_paths_read_positions = [
samtools.read_start_positions_from_dir_of_bam(self._project_file_folder_handler.get_bam_dir(sample_id))
]
with open(file_path_anonymous_gsa_mapping, 'w') as stream_output:
gs_mapping.gs_contig_mapping(
file_path_genome_locations, file_path_metadata, file_path_anonymous_mapping_tmp,
list_file_paths_read_positions, stream_output
)
if self._phase_compress:
self._list_tuple_archive_files.append(
(file_path_output_anonymous_gsa, file_path_output_anonymous_gsa_out+".gz"))
self._list_tuple_archive_files.append(
(file_path_anonymous_gsa_mapping, file_path_anonymous_gsa_mapping_out+".gz"))
else:
shutil.move(file_path_output_anonymous_gsa, file_path_output_anonymous_gsa_out)
if self._phase_pooled_gsa:
file_path_output_anonymous, file_path_anonymous_mapping_tmp = self._anonymize_pooled_gsa(
file_path_output_gsa_pooled,
"PC")
file_path_output_anonymous_out = self._project_file_folder_handler.get_anonymous_gsa_pooled_file_path()
file_path_anonymous_gsa_mapping_out = self._project_file_folder_handler.get_anonymous_gsa_pooled_map_file_path()
if self._phase_compress:
file_path_anonymous_gsa_mapping = tempfile.mktemp(
dir=self._project_file_folder_handler.get_tmp_wd(),
prefix="anonymous_gsa_pooled_mapping")
else:
file_path_anonymous_gsa_mapping = self._project_file_folder_handler.get_anonymous_gsa_pooled_map_file_path()
list_file_paths_read_positions = [
samtools.read_start_positions_from_dir_of_bam(self._project_file_folder_handler.get_bam_dir(str(sample_index)))
for sample_index in range(self._number_of_samples)
]
with open(file_path_anonymous_gsa_mapping, 'w') as stream_output:
gs_mapping.gs_contig_mapping(
file_path_genome_locations, file_path_metadata, file_path_anonymous_mapping_tmp,
list_file_paths_read_positions, stream_output
)
if self._phase_compress:
self._list_tuple_archive_files.append(
(file_path_output_anonymous, file_path_output_anonymous_out+".gz"))
self._list_tuple_archive_files.append(
(file_path_anonymous_gsa_mapping, file_path_anonymous_gsa_mapping_out+".gz"))
else:
shutil.move(file_path_output_anonymous, file_path_output_anonymous_out)
def _anonymize_reads(self, directory_fastq, sequence_prefix, paired_end):
"""
Anonymize simulated reads.
@param directory_fastq: fastq directory of a sample
@type directory_fastq: str | unicode
@param sequence_prefix: Prefix for anonymous sequence names
@type sequence_prefix: str | unicode
@param paired_end: True if reads are paired
@type paired_end: bool
@return: File path of anonymized reads and file path of a sequence name mapping
@rtype: tuple[str|unicode, str|unicode]
"""
fastaanonymizer = FastaAnonymizer(
logfile=self._logfile,
verbose=self._verbose,
debug=self._debug,
seed=None,
tmp_dir=self._project_file_folder_handler.get_tmp_wd()
)
if paired_end:
file_path_output_anonymous_reads, file_path_anonymous_mapping = fastaanonymizer.interweave_shuffle_anonymize(
directory_fastq,
prefix=sequence_prefix,
file_format="fastq",
file_extension="fq")
else:
file_path_output_anonymous_reads, file_path_anonymous_mapping = fastaanonymizer.shuffle_anonymize(
directory_fastq,
prefix=sequence_prefix,
file_format="fastq",
file_extension="fq")
return file_path_output_anonymous_reads, file_path_anonymous_mapping
def _anonymize_gsa(self, file_path_gsa, sequence_prefix):
"""
Anonymize assembly of a sample.
@param file_path_gsa: file paths of assembly from all samples
@type file_path_gsa: str | unicode
@param sequence_prefix: Prefix for anonymous sequence names
@type sequence_prefix: str | unicode
@return: File path of anonymized assembly and file path of a sequence name mapping
@rtype: tuple[str|unicode, str|unicode]
"""
fastaanonymizer = FastaAnonymizer(
logfile=self._logfile,
verbose=self._verbose,
debug=self._debug,
seed=None,
tmp_dir=self._project_file_folder_handler.get_tmp_wd()
)
file_path_output_anonymous_gs, file_path_anonymous_mapping = fastaanonymizer.shuffle_anonymize(
path_input=file_path_gsa,
prefix=sequence_prefix,
file_format="fasta")
return file_path_output_anonymous_gs, file_path_anonymous_mapping
def _anonymize_pooled_gsa(
self, file_path_output_pooled_anonymous, sequence_prefix):
"""
Anonymize assembly of a sample.
@param file_path_output_pooled_anonymous: file paths of assembly from all samples
@type file_path_output_pooled_anonymous: str | unicode
@param sequence_prefix: Prefix for anonymous sequence names
@type sequence_prefix: str | unicode
@return: File path of anonymized assembly and file path of a sequence name mapping
@rtype: tuple[str|unicode, str|unicode]
"""
fastaanonymizer = FastaAnonymizer(
logfile=self._logfile,
verbose=self._verbose,
debug=self._debug,
seed=None,
tmp_dir=self._project_file_folder_handler.get_tmp_wd()
)
file_path_output_anonymous, file_path_anonymous_mapping = fastaanonymizer.shuffle_anonymize(
path_input=file_path_output_pooled_anonymous,
prefix=sequence_prefix,
file_format="fasta")
return file_path_output_anonymous, file_path_anonymous_mapping
# #########################
#
# Compress Data
#
# #########################
def _compress_data(self):
"""
Compress files
@rtype: None
"""
compressor = Compress(
default_compression="gz",
logfile=self._logfile,
verbose=self._verbose,
debug=self._debug)
compressor.compress_list_tuples(
self._list_tuple_archive_files,
compresslevel=self._compresslevel,
compression_type='gz',
overwrite=False,
max_processors=self._max_processors)
if __name__ == "__main__":
pipeline = None
try:
pipeline = MetagenomeSimulation(
args=None, separator="\t",
column_name_genome_id="genome_ID", column_name_otu="OTU", column_name_novelty_category="novelty_category",
column_name_ncbi="NCBI_ID", column_name_source="source")
except (KeyboardInterrupt, SystemExit, Exception, ValueError, RuntimeError) as e:
# if debug:
# sys.stderr.write("\n{}\n".format(traceback.format_exc()))
if hasattr(e, 'args') and len(e.args) > 0:
sys.stderr.write("ERROR: ")
sys.stderr.write(str(e.args[0]))
sys.stderr.write("\n")
sys.exit(1)
sys.stderr.write("Aborted\n")
except AssertionError as e:
if hasattr(e, 'args') and len(e.args) > 0:
sys.stderr.write(e.args[0])
sys.exit(1)
sys.stderr.write("Aborted\n")
if not pipeline:
sys.exit(1)
pipeline.run_pipeline()