-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPCFG_learn.py
210 lines (162 loc) · 6.47 KB
/
PCFG_learn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# coding: utf-8
# In[1]:
import os
import sys
import codecs
import random
import pickle
from time import time
import numpy as np
import string
import re
import nltk
from collections import defaultdict
from nltk.corpus.reader.bracket_parse import BracketParseCorpusReader
MODEL_DIR = sys.argv[2]
PCFG_UNARY_RULES_FREQ_FILE = os.path.join(MODEL_DIR, "PCFG_unary_freq.pkl")
PCFG_BINARY_RULES_FREQ_FILE = os.path.join(MODEL_DIR, "PCFG_binary_freq.pkl")
PCFG_POSTAGS_FREQ_FILE = os.path.join(MODEL_DIR, "PCFG_postags_freq.pkl")
PCFG_UNARY_RULES_DICT_FILE = os.path.join(MODEL_DIR, "PCFG_unary_dict.pkl")
PCFG_BINARY_RULES_DICT_FILE = os.path.join(MODEL_DIR, "PCFG_binary_dict.pkl")
PCFG_POSTAGS_DICT_FILE = os.path.join(MODEL_DIR, "PCFG_postags_dict.pkl")
PCFG_NT_SET_FILE = os.path.join(MODEL_DIR, "PCFG_non_terminals_set.pkl")
PCFG_T_SET_FILE = os.path.join(MODEL_DIR, "PCFG_terminals_set.pkl")
PCFG_POSTAGS_SET_FILE = os.path.join(MODEL_DIR, "PCFG_postags_set.pkl")
# In[2]:
t0 = time()
print (">>> Reading corpus treebanks from file...")
corpus_root = sys.argv[1]
train_file_pattern = r".*_train.tb"
ptb_train = BracketParseCorpusReader(corpus_root, train_file_pattern)
print (">>> Corpus treebanks read done in %0.3fs.\n" % (time() - t0))
# In[3]:
t0 = time()
print (">>> Parsing collection of rules and words...")
# Objects for unary rules (A -> B)
unary_rules_freq = defaultdict(float)
unary_rules_cnt_by_lhs = defaultdict(int)
unary_rules_occur_cnt = 0
unary_lhs_set = set()
unary_rhs_set = set()
# Objects for binary rules (A -> BC)
binary_rules_freq = defaultdict(float)
binary_rules_cnt_by_lhs = defaultdict(int)
binary_rules_occur_cnt = 0
binary_lhs_set = set()
binary_rhs_set = set()
# Objects for terminal rules (POS -> <word>)
postags_freq = defaultdict(float)
postags_cnt_by_pos = defaultdict(int)
postags_occur_cnt = 0
words_occur_cnt = defaultdict(int)
postags_set = set()
words_set = set()
trees = ptb_train.parsed_sents()
for tree in trees:
t = tree.copy()
t.chomsky_normal_form(horzMarkov=2)
#t.collapse_unary(collapsePOS=True, collapseRoot=False)
prods = t.productions()
for prod in prods:
lhs = prod.lhs().symbol()
rh = prod.rhs()
#rhs = ' '.join([r.symbol() if isinstance(r, nltk.grammar.Nonterminal) else r for r in rh])
if isinstance(rh[0], unicode): # Ternimal production (POS -> <word>)
rhs = rh[0]
postags_freq[(lhs, rhs)] += 1
postags_cnt_by_pos[lhs] += 1
postags_occur_cnt += 1
words_occur_cnt[rhs] += 1
postags_set.add(lhs)
words_set.add(rhs)
else: # Non-terminal production (A -> BC | A -> B)
if len(rh) == 1: # Unary production (A -> B)
rhs = rh[0].symbol()
unary_rules_freq[(lhs, rhs)] += 1
unary_rules_cnt_by_lhs[lhs] += 1
unary_rules_occur_cnt += 1
unary_lhs_set.add(lhs)
unary_rhs_set.add(rhs)
elif len(rh) == 2:
rhs = tuple([nt.symbol() for nt in rh])
binary_rules_freq[(lhs, rhs)] += 1
binary_rules_cnt_by_lhs[lhs] += 1
binary_rules_occur_cnt += 1
binary_lhs_set.add(lhs)
binary_rhs_set.add(rhs)
# Replace rare words in the postags_freq with '<UNK>'
rare_words = set([w for w in words_set if words_occur_cnt[w] < 2])
T_set = words_set.copy()
T_set.difference_update(rare_words)
T_set.add(u"<UNK>")
pw_pairs = list(postags_freq.keys())
for (pos, w) in pw_pairs:
if w in rare_words:
postags_freq[(pos, u"<UNK>")] += postags_freq[(pos, w)]
postags_freq.pop((pos, w))
# Normalization to ensure that the sum of outgoing weights is 1 for each NT node
for (pos, w) in postags_freq:
postags_freq[(pos, w)] /= postags_cnt_by_pos[pos]
for (lhs, rhs) in unary_rules_freq:
unary_rules_freq[(lhs, rhs)] /= (unary_rules_cnt_by_lhs[lhs] + binary_rules_cnt_by_lhs[lhs])
for (lhs, rhs) in binary_rules_freq:
binary_rules_freq[(lhs, rhs)] /= (binary_rules_cnt_by_lhs[lhs] + unary_rules_cnt_by_lhs[lhs])
with codecs.open(PCFG_UNARY_RULES_FREQ_FILE, 'wb') as f:
pickle.dump(unary_rules_freq, f)
f.close()
with codecs.open(PCFG_BINARY_RULES_FREQ_FILE, 'wb') as f:
pickle.dump(binary_rules_freq, f)
f.close()
with codecs.open(PCFG_POSTAGS_FREQ_FILE, 'wb') as f:
pickle.dump(postags_freq, f)
f.close()
# Construct the rhs -> lhs dictionary for quick parent lookup in CYK algorithm
unary_rules_dict = {}
binary_rules_dict = {}
postags_dict = {}
for rhs in unary_rhs_set:
unary_rules_dict[rhs] = {}
for (lhs, rhs) in unary_rules_freq:
unary_rules_dict[rhs][lhs] = unary_rules_freq[(lhs, rhs)]
for rhs in binary_rhs_set:
binary_rules_dict[rhs] = {}
for (lhs, rhs) in binary_rules_freq:
binary_rules_dict[rhs][lhs] = binary_rules_freq[(lhs, rhs)]
for w in T_set:
postags_dict[w] = {}
for (pos, w) in postags_freq:
postags_dict[w][pos] = postags_freq[(pos, w)]
with codecs.open(PCFG_UNARY_RULES_DICT_FILE, 'wb') as f:
pickle.dump(unary_rules_dict, f)
f.close()
with codecs.open(PCFG_BINARY_RULES_DICT_FILE, 'wb') as f:
pickle.dump(binary_rules_dict, f)
f.close()
with codecs.open(PCFG_POSTAGS_DICT_FILE, 'wb') as f:
pickle.dump(postags_dict, f)
f.close()
# Store the set of non-terminals and terminals
NT_set = unary_lhs_set.union(binary_lhs_set)
with codecs.open(PCFG_NT_SET_FILE, 'wb') as f:
pickle.dump(NT_set, f)
f.close()
with codecs.open(PCFG_T_SET_FILE, 'wb') as f:
pickle.dump(T_set, f)
f.close()
with codecs.open(PCFG_POSTAGS_SET_FILE, 'wb') as f:
pickle.dump(postags_set, f)
f.close()
print ("Size of dictionary: %d, of which %d are rare words" % (len(words_set), len(rare_words)))
print ("Number of word occurrances: %d" % postags_occur_cnt)
print ("Number of POS tags: %d\n" % len(postags_set))
print ("Size of unary rules: %d" % len(unary_rules_freq))
print ("Number of unary rule occurrances: %d" % unary_rules_occur_cnt)
print ("Number of unary lhs: %d" % len(unary_lhs_set))
print ("Number of unary rhs: %d\n" % len(unary_rhs_set))
print ("Size of binary rules: %d" % len(binary_rules_freq))
print ("Number of binary rule occurrances: %d" % binary_rules_occur_cnt)
print ("Number of binary lhs: %d" % len(binary_lhs_set))
print ("Number of binary rhs: %d\n" % len(binary_rhs_set))
print ("Number of non-terminal symbols: %d" % len(NT_set))
print ("Number of terminal symbols: %d\n" % len(T_set))
print (">>> Collection of rules and words parsing done in %0.3fs.\n" % (time() - t0))