forked from AdmiralenOla/Scoary
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathScoary_methods.py
276 lines (219 loc) · 12.4 KB
/
Scoary_methods.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Script for associating Roary output with phenotypic trait (+/-)
# Idea and implementation: Ola Brynildsrud ([email protected])
# Structure of results dictionary:
# Results = {
# trait_1 : {
# gene_1 : {
# Annotation: Something
# OtherAnnotation : Something
# Score_1: a
# Score_2: b
# p_value: c
# p_corr: d
# }
# gene_2 : {...}
# }
# trait_2 : {...}
# }
# Null hypothesis: Gene is equally distributed in Trait+ and Trait- isolates
import argparse, os, sys, csv, time
from scipy import stats as ss
SCOARY_VERSION = 'v1.1'
def main():
# Parse arguments.
parser = argparse.ArgumentParser(description='Scoary version %s - Screen pan-genome for trait-associated genes' %(SCOARY_VERSION), epilog='by Ola Brynildsrud ([email protected])')
parser.add_argument('-t', '--traits', help='Input trait table (comma-separated-values). Trait presence is indicated by 1, trait absence by 0. Assumes strain names in the first column and trait names in the first row' )
parser.add_argument('-g', '--genes', help='Input gene presence/absence table (comma-separated-values) from ROARY. Strain names must be equal to those in the trait table')
parser.add_argument('-p', '--p_value_cutoff', help='P-value cut-off. SCOARY will not report genes with higher p-values than this. Set to 1.0 to report all genes. Default = 0.05', default=0.05, type=float)
parser.add_argument('-c', '--correction', help='Instead of cutting off at the individual test p-value (option -p), use the indicated corrected p-value for cut-off. Default = use individual test p-value.', choices=['Individual', 'Bonferroni', 'Holm-Sidak', 'Benjamini-Hochberg'], default='Individual')
parser.add_argument('-m', '--max_hits', help='Maximum number of hits to report. SCOARY will only report the top max_hits results per trait', type=int)
parser.add_argument('-r', '--restrict_to', help='Use if you only want to analyze a subset of your strains. SCOARY will read the provided comma-separated table of strains and restrict analyzes to these.')
parser.add_argument('-s', '--start_col', help='On which column in the gene presence/absence file do individual strain info start. Default=15. (1-based indexing)', default=15, type=int)
parser.add_argument('--delimiter', help='The delimiter between cells in the gene presence/absence and trait files. NOTE: Even though commas are the default they might mess with the annotation column, and it is therefore recommended to save your files using semicolon or tab ("\t") instead. SCOARY will output files delimited by semicolon', default=',', type=str)
parser.add_argument('--version', help='Display Scoary version, and exit.', default=False,action='store_true')
args = parser.parse_args()
# add version for tracing facilities
if args.version:
print sys.stdout, "Scoary version: %s" %(SCOARY_VERSION)
sys.exit(0)
# check required arguments.
if args.traits is None or args.genes is None :
parser.print_usage()
if args.traits is None :
print "error: argument -t/--traits is required"
if args.genes is None:
print "error: argument -g/--genes is required"
sys.exit(1)
with open(args.genes, "rU") as genes, open(args.traits, "rU") as traits:
if args.restrict_to is not None:
with open(args.restrict_to, "rU") as restrict_to_isolates:
allowed_isolates = [isolate for isolate in restrict_to_isolates.next().rstrip().split(",")]
else:
allowed_isolates = None # Despite the confusing name, this actually means all isolates are allowed and included in the analysis
genedic = Csv_to_dic_Roary(genes, args.delimiter, startcol=args.start_col - 1, allowed_isolates=allowed_isolates) # 0-based indexing
traitsdic = Csv_to_dic(traits, args.delimiter, allowed_isolates)
print "Finished loading files into memory."
print "Tallying genes and performing statistical analyses"
RES = Setup_results(genedic, traitsdic)
StoreResults(RES, args.max_hits, args.p_value_cutoff, args.correction)
sys.exit("Finished")
def Csv_to_dic_Roary(genefile, delimiter, startcol=0, allowed_isolates=None):
r = {}
csvfile = csv.reader(genefile, skipinitialspace=True)
header = csvfile.next()
# If roaryfile = True, then commence reading from column 15 (where the strains start)
# Code to find out where strains begin. Use if Roary starts including more columns:
#for x in header:
# if x not in ['Gene', 'Non-unique Gene name', 'Annotation', 'No. isolates', 'No. sequences', 'Avg sequences per isolate', 'Genome Fragment', 'Order within Fragment', 'Accessory Fragment', 'Accessory Order with Fragment', 'QC', 'Min group size nuc', 'Max group size nuc', 'Avg group size nuc']:
# print x
# break
# This might be expanded if Roary changes its output format. For now:
roaryfile = True
strains = header[startcol:]
try:
genecol = header.index("Gene")
nugcol = header.index("Non-unique Gene name")
anncol = header.index("Annotation")
except ValueError:
print "Warning: Could not properly detect the correct names for all columns in the ROARY table."
genecol = 0
nugcol = 1
anncol = 2
for line in csvfile:
q = line
r[q[genecol]] = {"Non-unique Gene name" : q[nugcol], "Annotation" : q[anncol]} if roaryfile else {}
for strain in xrange(len(strains)):
if (allowed_isolates is not None) and strains[strain] not in allowed_isolates:
continue
if q[startcol + strain] in ["", "0", "-"]:
# If the gene is not present, AND The isolate is allowed
r[q[genecol]][strains[strain]] = 0
# Add a 0 to indicate non-presence
else:
# Gene is present if any other value than "", "0" or "-" is in the cell
r[q[genecol]][strains[strain]] = 1
# Add a 1 to indicate presence of the current gene in this strain
return r
def Csv_to_dic(csvfile, delimiter, allowed_isolates):
tab = zip(*csv.reader(csvfile, delimiter=delimiter))
r = {}
if len(tab) < 2:
sys.exit("Please check that your traits file is formatted properly and contain at least one trait")
for num_trait in xrange(1,len(tab)):
p = dict(zip(tab[0], tab[num_trait]))
if "" in p:
name_trait = p[""]
del p[""]
elif "Name" in p:
name_trait = p["name"]
del p["Name"]
else:
sys.exit("Make sure the top-left cell in the traits file is either empty or 'Name'. Do not include empty rows")
# Filter so that only allowed isolates are included
if allowed_isolates is not None:
p = {strain: indicator for (strain,indicator) in p.iteritems() if strain in allowed_isolates} # if allowed_isolates is not None
r[name_trait] = p
return r
def Setup_results(genedic, traitsdic):
# Need to create one results dictionary for each trait
all_traits = {}
for trait in traitsdic:
all_traits[trait] = {}
# Also need a list of all p-values to perform stepwise FDR methods
p_value_list = []
print "Gene-wise counting and Fisher's exact tests for trait: " + trait
# We also need a number of tests variable for each genedic. (The number of tests may not be the same, depending on how many genes are in 0 or all strains.)
number_of_tests = len(genedic)
initial_number_of_tests = number_of_tests # This number needed for status bar
i = 0 # Progress
for gene in genedic:
# Status:
sys.stdout.write("\r{:.2%}".format(float(i)/initial_number_of_tests))
sys.stdout.flush()
i += 1 # Progress
stat_table = Perform_statistics(traitsdic[trait], genedic[gene])
num_pos = stat_table["tpgp"] + stat_table["tpgn"]
num_neg = stat_table["tngp"] + stat_table["tngn"]
if (stat_table["tpgp"] + stat_table["tngp"]) == 0:
number_of_tests -= 1 # Remove 1 from the number of tests
continue # proceed to the next gene
if (stat_table["tpgn"] + stat_table["tngn"]) == 0:
number_of_tests -= 1
continue
obs_table = [[stat_table["tpgp"], stat_table["tpgn"]],[stat_table["tngp"],stat_table["tngn"]]]
fisher = ss.fisher_exact(obs_table)
p_value = fisher[1]
bonferroni_p = p_value * number_of_tests if (p_value * number_of_tests) < 1.0 else 1.0
p_value_list.append((gene, p_value))
all_traits[trait][gene] = { \
"NUGN": genedic[gene]["Non-unique Gene name"], \
"Annotation": genedic[gene]["Annotation"], \
"tpgp": stat_table["tpgp"], \
"tngp": stat_table["tngp"], \
"tpgn": stat_table["tpgn"], \
"tngn": stat_table["tngn"], \
"sens": (float(stat_table["tpgp"]) / num_pos * 100) if num_pos > 0 else 0.0, \
"spes": (float(stat_table["tngn"]) / num_neg * 100) if num_neg > 0 else 0.0, \
"OR": fisher[0], \
"p_v": p_value, \
"B_p": bonferroni_p, \
}
print "\nAdding p-values adjusted for testing multiple hypotheses"
# Now calculate Holm-Sidak and Benjamini-Hochberg p-values
sorted_p_values = sorted(p_value_list, key=lambda x: x[1]) # Sorted list of tuples: (gene, p-value)
# Find out which p-values are ties
tie = [ sorted_p_values[i-1] == sorted_p_values[i] for i in xrange(1,len(sorted_p_values)) ]
hs_corrected_p_values = {}
bh_corrected_p_values = {}
last_hs = (1.0 - (1.0-sorted_p_values[0][1])**number_of_tests)
last_bh = (sorted_p_values[0][1]*number_of_tests/1.0)
for (ind, (gene,p)) in enumerate(sorted_p_values):
hs_corrected_p_values[gene] = (1.0-(1.0-p)**(number_of_tests - float(ind))) if not tie else last_hs
bh_corrected_p_values[gene] = p*number_of_tests/(ind+1.0) if not tie else last_bh
last_hs = hs_corrected_p_values[gene]
last_bh = bh_corrected_p_values[gene]
# Now add values to dictionaries:
for gene in genedic:
if gene in all_traits[trait]:
all_traits[trait][gene]["HS_p"] = hs_corrected_p_values[gene] if hs_corrected_p_values[gene] < 1.0 else 1.0
all_traits[trait][gene]["BH_p"] = bh_corrected_p_values[gene] if bh_corrected_p_values[gene] < 1.0 else 1.0
return all_traits
def Perform_statistics(traits, genes):
r = {"tpgp" : 0, "tpgn": 0, "tngp" : 0, "tngn" : 0} # tpgn = trait positive, gene negative
for t in traits: # For each strain
try:
if int(traits[t]) == 1 and genes[t] == 1:
r["tpgp"] += 1
elif int(traits[t]) == 1 and genes[t] == 0:
r["tpgn"] += 1
elif int(traits[t]) == 0 and genes[t] == 1:
r["tngp"] += 1
elif int(traits[t]) == 0 and genes[t] == 0:
r["tngn"] += 1
else:
sys.exit("There was a problem with comparing your traits and gene presence/absence files. Make sure you have formatted the traits file to specification and only use 1s and 0s, and make sure the Roary file contains empty cells for non-present genes and non-empty text cells for present genes")
except KeyError:
print "\nError occured when trying to find " + str(t) + " in the genes file."
sys.exit("Make sure strains are named the same in your traits file as in your gene presence/absence file")
return r
def StoreResults(Results, max_hits, p_cutoff, correctionmethod):
for Trait in Results:
print "Storing results: " + Trait
StoreTraitResult(Results[Trait], Trait, max_hits, p_cutoff, correctionmethod)
def StoreTraitResult(Trait, Traitname, max_hits, p_cutoff, correctionmethod): # This method is passed a single trait
with open(Traitname + time.strftime("_%d_%m_%Y_%H%M") + ".csv", "w") as outfile:
# Sort genes by p-value.
sort_instructions = SortResultsAndSetKey(Trait)
num_results = max_hits if max_hits is not None else len(Trait)
cut_possibilities = {"Individual": "p_v", "Bonferroni": "B_p", "Holm_Sidak": "HS_p", "Benjamini-Hochberg": "BH_p"}
outfile.write("Gene;Non-unique gene name;Annotation;Number_pos_present_in;Number_neg_present_in;Number_pos_not_present_in;Number_neg_not_present_in;Sensitivity;Specificity;Odds_ratio;p_value;Bonferroni_p;Holm-Sidak_p;Benjamini_H_p\n")
for x in xrange(num_results):
# Start with lowest p-value, the one which has key 0 in sort_instructions
currentgene = sort_instructions[x]
if (Trait[currentgene][cut_possibilities[correctionmethod]] > p_cutoff):
break
outfile.write(currentgene + ";" + str(Trait[currentgene]["NUGN"]) + ";" + str(Trait[currentgene]["Annotation"]) + ";" + str(Trait[currentgene]["tpgp"]) + ";" + str(Trait[currentgene]["tngp"]) + ";" + str(Trait[currentgene]["tpgn"]) + ";" + str(Trait[currentgene]["tngn"]) + ";" + str(Trait[currentgene]["sens"]) + ";" + str(Trait[currentgene]["spes"]) + ";" + str(Trait[currentgene]["OR"]) + ";" + str(Trait[currentgene]["p_v"]) + ";" + str(Trait[currentgene]["B_p"]) + ";" + str(Trait[currentgene]["HS_p"]) + ";" + str(Trait[currentgene]["BH_p"]) + "\n")
def SortResultsAndSetKey(genedic): # This returns a dictionary where genes are sorted by p_value.
return {i:gene for (i,gene) in enumerate(sorted(genedic, key=lambda x: genedic[x]["p_v"])) }