-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathtrain.py
236 lines (197 loc) · 10.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import os
import os.path as osp
from tqdm import tqdm
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from torch.optim import Adam, SGD
from torch.optim.lr_scheduler import ReduceLROnPlateau, StepLR, MultiStepLR
from torchnet import meter
from model.hourglass import PoseNet
from model.resnet_deconv import get_deconv_net
from model.loss import My_SmoothL1Loss
from dataloader.nyu_loader import NYU
from util.feature_tool import FeatureModule
from util.eval_tool import EvalUtil
from util.vis_tool import VisualUtil
from util.util import xyz2uvd, uvd2xyz
def print_msg(msg, file=None):
print(msg)
if file is not None:
print(msg, file=file)
class Trainer(object):
def __init__(self, config):
torch.cuda.set_device(config.gpu_id)
cudnn.benchmark = True
self.config = config
self.data_dir = osp.join(self.config.data_dir, self.config.dataset)
# output dirs for model, log and result figure saving
self.work_dir = osp.join(self.config.output_dir, self.config.dataset, 'checkpoint_'+ self.config.exp_id)
self.result_dir = osp.join(self.work_dir, 'results')
if not osp.exists(self.result_dir):
os.makedirs(self.result_dir)
self.log_file = osp.join(self.work_dir, '%s_%s.log' % (self.config.net, self.config.log_id))
self.log = open(self.log_file, 'a')
self.vis_tool = VisualUtil(self.config.dataset)
# save config file
print('-------------------start programming-------------------', file=self.log)
for k, v in self.config.__class__.__dict__.items():
if not k.startswith('_'):
print_msg(str(k) + ":" + str(v), self.log)
if 'resnet' in self.config.net:
net_layer = int(self.config.net.split('_')[1])
self.net = get_deconv_net(net_layer, self.config.jt_num, self.config.downsample)
elif 'hourglass' in self.config.net:
self.stacks = int(self.config.net.split('_')[1])
print_msg('hourglass stacks:{}'.format(self.stacks), file=self.log)
self.net = PoseNet(self.config.net, self.config.jt_num)
self.net = self.net.cuda()
# init dataset, you can add other datasets
if self.config.dataset == 'nyu':
self.trainData = NYU(self.data_dir, 'train', img_size=self.config.img_size, aug_para=self.config.augment_para, cube=self.config.cube)
self.testData = NYU(self.data_dir, 'test', img_size=self.config.img_size, cube=self.config.cube)
# init optimizer
if self.config.optimizer == 'adam':
self.optimizer = Adam(self.net.parameters(), lr=self.config.lr, weight_decay=self.config.weight_decay)
elif self.config.optimizer == 'sgd':
self.optimizer = SGD(self.net.parameters(), lr=self.config.lr, momentum=0.9, weight_decay=self.config.weight_decay)
# init loss function
self.criterion = My_SmoothL1Loss().cuda()
self.FM = FeatureModule()
self.best_records={'epoch': 0,
'MPE': 1e10,
'AUC': 0}
# load model
if self.config.load_model :
print_msg('loading model from {}'.format(self.config.load_model))
pth = torch.load(self.config.load_model)
self.net.load_state_dict(pth['model'])
self.optimizer.load_state_dict(pth['optimizer'])
if 'best_records' in pth:
self.best_records= pth['best_records']
# init scheduler
if self.config.scheduler == 'auto':
self.scheduler = ReduceLROnPlateau(self.optimizer, "min", patience=2, min_lr=1e-8)
elif self.config.scheduler == 'step':
self.scheduler = StepLR(self.optimizer, step_size=self.config.step, gamma=0.1, last_epoch=self.best_records['epoch'])
for param_group in self.optimizer.param_groups:
param_group['lr'] = self.config.lr
print_msg('learning rate: {:.1e}'.format(param_group['lr']), file=self.log)
def train(self):
trainLoader = DataLoader(self.trainData, batch_size=self.config.batch_size, shuffle=True, num_workers=self.config.num_workers)
# step4: meters
eval_tool = EvalUtil(self.trainData.img_size, self.trainData.paras, self.trainData.flip, self.trainData.jt_num)
loss_meter = meter.AverageValueMeter()
# train
for epoch in range(self.best_records['epoch']+1, self.config.max_epoch+1):
self.net.train()
for ii, (img, jt_xyz_gt, jt_uvd_gt, center_xyz, M, cube) in tqdm(enumerate(trainLoader)):
# train model
input = img.cuda()
self.ft_sz = int(self.config.img_size / self.config.downsample)
jt_uvd_gt = jt_uvd_gt.cuda()
offset_gt = self.FM.joint2offset(jt_uvd_gt, input, self.config.kernel_size, self.ft_sz)
if 'hourglass' in self.config.net:
for stage_idx in range(self.stacks):
offset_pred = self.net(input)[stage_idx]
jt_uvd_pred = self.FM.offset2joint_softmax(offset_pred, input, self.config.kernel_size)
loss_coord = self.config.coord_weight * self.criterion(jt_uvd_pred, jt_uvd_gt)
loss_offset = self.config.dense_weight * self.criterion(offset_pred, offset_gt)
loss = (loss_coord + loss_offset)
else:
offset_pred = self.net(input)
jt_uvd_pred = self.FM.offset2joint_softmax(offset_pred, input, self.config.kernel_size)
loss_coord = self.config.coord_weight * self.criterion(jt_uvd_pred, jt_uvd_gt)
loss_offset = self.config.dense_weight * self.criterion(offset_pred, offset_gt)
loss = (loss_coord + loss_offset)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
# meters_update
loss_meter.add(loss.item())
if (ii + 1) % self.config.print_freq == 0:
print_msg('[epoch: {:02d}][train loss: {:.5f}][offset_loss: {:.5f}][coord_loss: {:.5f}]'
.format(epoch,loss_meter.value()[0],loss_offset.item(),loss_coord.item()),
file=self.log)
loss_meter.reset()
for i in range(jt_uvd_pred.shape[0]):
eval_tool.feed(
jt_uvd_pred[i].detach().cpu().numpy(),
jt_xyz_gt[i].detach().cpu().numpy(),
center_xyz[i].detach().cpu().numpy(),
M[i].detach().cpu().numpy(),
cube[i].detach().cpu().numpy()
)
train_mpe, _, _, _, _= eval_tool.get_measures()
print_msg(
"[epoch {:02d}], [train loss {:.5f}], [train mpe {:.5f}], [lr {:.1e}]"
.format(epoch, loss_meter.value()[0], train_mpe, self.optimizer.param_groups[0]["lr"]),
file=self.log
)
if self.config.scheduler == 'auto':
self.scheduler.step(train_mpe)
elif self.config.scheduler == 'step':
self.scheduler.step(epoch)
# temporary save in case there is no improvement
self.test(epoch)
torch.save(
{
'model': self.net.state_dict(),
'optimizer': self.optimizer.state_dict(),
'best_records': self.best_records
},
osp.join(self.work_dir, 'epoch_{}.pth'.format(epoch))
)
self.log.flush()
self.log.close()
def test(self, epoch=0):
testLoader = DataLoader(self.testData, batch_size=self.config.batch_size, shuffle=False, num_workers=self.config.num_workers)
self.net.eval()
eval_tool = EvalUtil(self.testData.img_size, self.testData.paras, self.testData.flip, self.testData.jt_num)
for ii, (img, jt_xyz_gt, jt_uvd_gt, center_xyz, M, cube) in tqdm(enumerate(testLoader)):
input = img.cuda()
self.ft_sz = int(self.config.img_size / self.config.downsample)
if 'hourglass' in self.config.net:
for stage_idx in range(self.stacks):
offset_pred = self.net(input)[stage_idx]
jt_uvd_pred = self.FM.offset2joint_softmax(offset_pred, input, self.config.kernel_size)
else:
offset_pred = self.net(input)
jt_uvd_pred = self.FM.offset2joint_softmax(offset_pred, input, self.config.kernel_size)
for i in range(jt_uvd_pred.shape[0]):
eval_tool.feed(
jt_uvd_pred[i].detach().cpu().numpy(),
jt_xyz_gt[i].detach().cpu().numpy(),
center_xyz[i].detach().cpu().numpy(),
M[i].detach().cpu().numpy(),
cube[i].detach().cpu().numpy()
)
if (ii + 1) % self.config.vis_freq == 0:
img_path = osp.join(self.result_dir, 'test_epoch_{}_iter_{}.png'.format(epoch, ii + 1))
jt_uvd_pred_vis = (jt_uvd_pred[0] + 1) * self.config.img_size / 2.
jt_uvd_gt_vis = (jt_uvd_gt[0] + 1) * self.config.img_size / 2.
self.vis_tool.plot(
img[0].detach().cpu().numpy(),
img_path,
jt_uvd_pred_vis.detach().cpu().numpy(),
jt_uvd_gt_vis.detach().cpu().numpy()
)
mpe, mid, auc, pck, thresh = eval_tool.get_measures()
eval_tool.plot_pck(osp.join(self.work_dir, 'test_pck_epoch_{}.png'.format(epoch)), pck, thresh)
if epoch == 0:
txt_file = osp.join(self.work_dir, 'test_%.3f.txt' % mpe)
jt_uvd = np.array(eval_tool.jt_uvd_pred, dtype = np.float32)
if not txt_file == None:
np.savetxt(txt_file, jt_uvd.reshape([jt_uvd.shape[0], self.config.jt_num * 3]), fmt='%.3f')
print_msg(
"[epoch {:2d}], [test mpe {:.3f}], [lr {:.1e}]"
.format(epoch, mpe, self.optimizer.param_groups[0]["lr"]),
file=self.log
)
if __name__=='__main__':
from config import opt
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
trainer = Trainer(opt)
trainer.test()
# trainer.train()