This repository has been archived by the owner on Jan 12, 2025. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
42 lines (38 loc) · 1.46 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import streamlit as st
import pandas as pd
def generate_line_chart(csv_path: str, title: str, desc: str, x_label: str, y_label: str) -> None:
df = pd.read_csv(csv_path)
reshaped_df = df.pivot(index="num_vectors", columns="k", values="mean_time_secs")
reshaped_df.columns = [f"k={col}" for col in reshaped_df.columns]
st.markdown(f'''
### {title}
{desc}
''')
st.line_chart(
data=reshaped_df,
x_label=x_label,
y_label=y_label,
use_container_width=False,
width=700,
height=500
)
if __name__ == '__main__':
st.set_page_config()
st.markdown('''
# EigenDB Performance Metrics
The data has been collected using a [simple script](https://github.com/Eigen-DB/eigen-db/blob/main/benchmarks/benchmarks.py) for benchmarking EigenDB.
''')
generate_line_chart(
csv_path='./data/indexing_mean.csv',
title='Mean similarity search time',
desc='This is the average time to perform similarity search with varying numbers of embeddings and values of k.',
x_label='Number of embeddings',
y_label='Mean time (secs)'
)
generate_line_chart(
csv_path='./data/inserting_mean.csv',
title='Mean embedding insertion time',
desc='This is the average time to insert an embedding with varying numbers of embeddings and values of k.',
x_label='Number of embeddings',
y_label='Mean time (secs)'
)