This repository has been archived by the owner on Oct 25, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathtrain.py
163 lines (137 loc) · 6.42 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import os
import math
import torch
import torch.nn as nn
import traceback
import time
import numpy as np
import argparse
from utils.generic_utils import load_config
from utils.generic_utils import set_init_dict
from utils.tensorboard import TensorboardWriter
from utils.dataset import train_dataloader, eval_dataloader
from utils.generic_utils import validation, PowerLaw_Compressed_Loss, SiSNR_With_Pit
from models.voicefilter.model import VoiceFilter
from models.voicesplit.model import VoiceSplit
from utils.audio_processor import WrapperAudioProcessor as AudioProcessor
def train(args, log_dir, checkpoint_path, trainloader, testloader, tensorboard, c, model_name, ap, cuda=True):
if(model_name == 'voicefilter'):
model = VoiceFilter(c)
elif(model_name == 'voicesplit'):
model = VoiceSplit(c)
else:
raise Exception(" The model '"+model_name+"' is not suported")
if c.train_config['optimizer'] == 'adam':
optimizer = torch.optim.Adam(model.parameters(),
lr=c.train_config['learning_rate'])
else:
raise Exception("The %s not is a optimizer supported" % c.train['optimizer'])
step = 0
if checkpoint_path is not None:
print("Continue training from checkpoint: %s" % checkpoint_path)
try:
if c.train_config['reinit_layers']:
raise RuntimeError
checkpoint = torch.load(checkpoint_path, map_location='cpu')
model.load_state_dict(checkpoint['model'])
if cuda:
model = model.cuda()
except:
print(" > Partial model initialization.")
model_dict = model.state_dict()
model_dict = set_init_dict(model_dict, checkpoint, c)
model.load_state_dict(model_dict)
del model_dict
try:
optimizer.load_state_dict(checkpoint['optimizer'])
except:
print(" > Optimizer state is not loaded from checkpoint path, you see this mybe you change the optimizer")
step = checkpoint['step']
else:
print("Starting new training run")
# convert model from cuda
if cuda:
model = model.cuda()
# definitions for power-law compressed loss
power = c.loss['power']
complex_ratio = c.loss['complex_loss_ratio']
# composte loss
#criterion_mse = nn.MSELoss()
#criterion = nn.L1Loss()
if c.loss['loss_name'] == 'power_law_compression':
criterion = PowerLaw_Compressed_Loss(power, complex_ratio)
elif c.loss['loss_name'] == 'si_snr':
criterion = SiSNR_With_Pit()
else:
raise Exception(" The loss '"+c.loss['loss_name']+"' is not suported")
for _ in range(c.train_config['epochs']):
validation(criterion, ap, model, testloader, tensorboard, step, cuda=cuda, loss_name=c.loss['loss_name'] )
#break
model.train()
for emb, target, mixed, seq_len, target_wav, spec_phase in trainloader:
#try:
if cuda:
emb = emb.cuda()
target = target.cuda()
mixed = mixed.cuda()
seq_len = seq_len.cuda()
spec_phase = spec_phase.cuda()
mask = model(mixed, emb)
output = mixed * mask
if c.loss['loss_name'] == 'si_snr':
# convert spec to wav using phase
output = ap.torch_inv_spectrogram(output, spec_phase)
target = ap.torch_inv_spectrogram(target, spec_phase)
shape = list(target.shape)
target = torch.reshape(target, [shape[0],1]+shape[1:]) # append channel dim
output = torch.reshape(output, [shape[0],1]+shape[1:]) # append channel dim
else:
seq_len = None
# Calculate loss
loss = criterion(output, target, seq_len)
optimizer.zero_grad()
loss.backward()
optimizer.step()
step += 1
loss = loss.item()
if loss > 1e8 or math.isnan(loss):
print("Loss exploded to %.02f at step %d!" % (loss, step))
break
# write loss to tensorboard
if step % c.train_config['summary_interval'] == 0:
tensorboard.log_training(loss, step)
print("Write summary at step %d" % step)
# save checkpoint file and evaluate and save sample to tensorboard
if step % c.train_config['checkpoint_interval'] == 0:
save_path = os.path.join(log_dir, 'checkpoint_%d.pt' % step)
torch.save({
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'step': step,
'config_str': str(c),
}, save_path)
print("Saved checkpoint to: %s" % save_path)
validation(criterion, ap, model, testloader, tensorboard, step, cuda=cuda)
model.train()
#except:
#print("Error, probably because the embedding reference is too small")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-d', '--dataset_dir', type=str, default='./',
help="Root directory of run.")
parser.add_argument('-c', '--config_path', type=str, required=True,
help="json file with configurations")
parser.add_argument('--checkpoint_path', type=str, default=None,
help="path of checkpoint pt file, for continue training")
args = parser.parse_args()
c = load_config(args.config_path)
ap = AudioProcessor(c.audio)
log_path = os.path.join(c.train_config['logs_path'], c.model_name)
os.makedirs(log_path, exist_ok=True)
audio_config = c.audio[c.audio['backend']]
tensorboard = TensorboardWriter(log_path, audio_config)
if(not os.path.isdir(c.dataset['train_dir'])) or (not os.path.isdir(c.dataset['test_dir'])):
raise Exception("Please verify directories of dataset in "+args.config_path)
train_dataloader = train_dataloader(c, ap)
test_dataloader = eval_dataloader(c, ap)
train(args, log_path, args.checkpoint_path, train_dataloader, test_dataloader, tensorboard, c, c.model_name, ap, cuda=True)