-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathgetMultipleWaves.m
170 lines (140 loc) · 4.99 KB
/
getMultipleWaves.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
function [Q,R,D,T] = getMultipleWaves(guess,Npop,time,Confirmed,Recovered,Deaths,tStart1,tStart2,tEnd,varargin)
% [Q,R,D,T] =
% getMultipleWaves(guess,Npop,time,Confirmed,Recovered,Deaths,tStart1,tStart2,tEnd)
% simulate the number of recovered, deaths and active cases for the
% situation were two epidemic waves occur
%
% Inputs:
% guess: double [1x10]: Initial guess for the fitting algorithm
% Npop: double [1x1]: Population
% time: datetime: [1xN]: time array
% Confirmed: double [1xN]: Time histories of the confirmed cases (Active+recovered+deaths)
% Deaths: double [1xN]: Time histories of the deceased cases
% Recovered: double [1xN]: Time histories of the recovered cases
% tStart1: datetime [1x1]: Initial time for the first wave
% tStart2: datetime [1x1]: Initial time for the second wave
% tEnd: datetime [1x1]: Final time for the simulation
% Q0: datetime [1x1]: Initial number of quarantined cases
% E0: datetime [1x1]: Initial number of exposed cases
% I0: datetime [1x1]: Initial number of infectious cases
%
% Outputs
% Q: double [1xN1]: Time histories of the quarantined/active cases
% D: double [1xN1]: Time histories of the deceased cases
% R: double [1xN1]: Time histories of the recovered cases
% T: datetime: [1xN1]: time array
%
% Author: E. Cheynet - UiB - last modified: 07-05-2020
%
% see also SEIQRDP.m fit_SEIQRDP.m
%% varargin
Active = Confirmed-Recovered-Deaths;
Active(Active<0) = 0; % No negative number possible
%% Inputparseer
p = inputParser();
p.CaseSensitive = false;
p.addOptional('Q0',Active(1));
p.addOptional('E0',0.3*Active(1));
p.addOptional('I0',5*Active(1));
p.parse(varargin{:});
%%%%%%%%%%%%%%%%%%%%%%%%%%
Q0 = p.Results.Q0 ; % initial number of active cases
E0 = p.Results.E0 ; % Initial number of exposed cases. Unknown but unlikely to be zero.
I0 = p.Results.I0 ; % Initial number of infectious cases. Unknown but unlikely to be zero.
%% Remove unecessary data
Confirmed(time<tStart1) = [];
Recovered(time<tStart1) = [];
Deaths(time<tStart1) = [];
time(time<tStart1) = [];
Active = Confirmed-Recovered-Deaths;
Active(Active<0) = 0; % No negative number possible
% Time for first wave
indT1 = find(time>=tStart1 & time<tStart2);
% Time for second wave
indT2 = find(time>=tStart2);
%% Simulate first wave
% Initial conditions
R0 = Recovered(indT1(1));
D0 = Deaths(indT1(1));
[E1,I1,Q1,R1,D1,T1] = computeWave(Active(indT1),Recovered(indT1),...
Deaths(indT1),E0,I0,Q0,R0,D0,time(indT1),tStart1,tStart2,guess);
%% Simulate second wave
E0 = E1(end);
I0 = I1(end);
Q0 = Q1(end);
R0 = R1(end);
D0 = D1(end);
[~,~,Q2,R2,D2,T2] = computeWave(Active(indT2),Recovered(indT2),...
Deaths(indT2),E0,I0,Q0,R0,D0,time(indT2),tStart2,tEnd,guess);
%% Concatenate outputs
Q = [Q1,Q2];
R = [R1,R2];
D = [D1,D2];
T= [T1,T2];
%% Check RMSE and refit with different I0 if needed
[~,ind] = unique(T);
newQ = interp1(T(ind),Q(ind),time);
[rmse] = RMSE(Active(~isnan(newQ)),newQ(~isnan(newQ)));
if rmse <1e5,
fprintf('Fitting succeded. Check the initial value of E0 and I0 \n');
Q = [Q1,Q2];
R = [R1,R2];
D = [D1,D2];
T= [T1,T2];
return
end
newI0 = [1:2:10].*Active(1);
count = 1;
while rmse>1e5
R0 = Recovered(indT1(1));
D0 = Deaths(indT1(1));
[E1,I1,Q1,R1,D1,T1] = computeWave(Active(indT1),Recovered(indT1),...
Deaths(indT1),E0,newI0(count),Q0,R0,D0,time(indT1),tStart1,tStart2,guess);
% Simulate second wave
E0 = E1(end); I0 = I1(end); Q0 = Q1(end); R0 = R1(end);
D0 = D1(end);
[~,~,Q2,R2,D2,T2] = computeWave(Active(indT2),Recovered(indT2),...
Deaths(indT2),E0,I0,Q0,R0,D0,time(indT2),tStart2,tEnd,guess);
% Concatenate outputs
Q = [Q1,Q2];
R = [R1,R2];
D = [D1,D2];
T= [T1,T2];
count = count+1;
[~,ind] = unique(T);
newQ = interp1(T(ind),Q(ind),time);
[rmse] = RMSE(Active(~isnan(newQ)),newQ(~isnan(newQ)));
if rmse <1e5,
fprintf('Fitting succeded. Check the initial value of E0 and I0 \n');
Q = [Q1,Q2];
R = [R1,R2];
D = [D1,D2];
T= [T1,T2];
return
end
if count >=numel(newI0)
warning('Fitting failed. Check the initial value of E0 and I0');
Q = [Q1,Q2];
R = [R1,R2];
D = [D1,D2];
T= [T1,T2];
return
end
end
plot(time,newQ,time,Active)
%% Nested functions
function [E,I,Q,R,D,newT] = computeWave(Active,Recovered,Deaths,E0,I0,Q0,R0,D0,time,tStart,tEnd,guess)
% Parameter estimation with the lsqcurvefit function
[alpha1,beta1,gamma1,delta1,Lambda1,Kappa1,lambdaFun,kappaFun] = ...
fit_SEIQRDP(Active,Recovered,Deaths,Npop,E0,I0,time,guess,'Display','off');
dt = 1/24; % time step
newT = tStart:dt:tEnd;
N = numel(newT);
t = [0:N-1].*dt;
[~,E,I,Q,R,D,~] = SEIQRDP(alpha1,beta1,gamma1,delta1,Lambda1,Kappa1,...
Npop,E0,I0,Q0,R0,D0,t,lambdaFun,kappaFun);
end
function [rmse] = RMSE(y1,y2)
rmse = sqrt(nanmean((y1(:)-y2(:)).^2));
end
end