-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathfit_SEIQRDP.m
398 lines (336 loc) · 14.2 KB
/
fit_SEIQRDP.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
function [alpha1,beta1,gamma1,delta1,Lambda1,Kappa1,lambdaFun,kappaFun] = fit_SEIQRDP(Q,R,D,Npop,E0,I0,time,guess,varargin)
% [alpha1,beta1,gamma1,delta1,Lambda1,Kappa1,lambdaFun,varargout] =
% fit_SEIQRDP(Q,R,D,Npop,E0,I0,time,guess,varargin) estimates the
% parameters used in the SEIQRDP function, used to model the time-evolution
% of an epidemic outbreak.
%
% Input
%
% Q: vector [1xN] of the target time-histories of the quarantined cases
% R: vector [1xN] of the target time-histories of the recovered cases
% D: vector [1xN] of the target time-histories of the dead cases
% Npop: scalar: Total population of the sample
% E0: scalar [1x1]: Initial number of exposed cases
% I0: scalar [1x1]: Initial number of infectious cases
% time: vector [1xN] of time (datetime)
% guess: first vector [1x6] guess for the fit
% optionals
% -tolFun: tolerance option for optimset
% -tolX: tolerance option for optimset
% -Display: Display option for optimset
% -dt: time step for the fitting function
%
% Output
%
% alpha: scalar [1x1]: fitted protection rate
% beta: scalar [1x1]: fitted infection rate
% gamma: scalar [1x1]: fitted Inverse of the average latent time
% delta: scalar [1x1]: fitted rate at which people enter in quarantine
% lambda: scalar [1x1]: fitted cure rate
% kappa: scalar [1x1]: fitted mortality rate
% lambdaFun: anonymous function giving the time-dependant recovery rate
% kappaFun: anonymous function giving the time-dependant death rate
%
% Author: E. Cheynet - UiB - last modified 23-05-2020
%
% see also SEIQRDP.m
%% Inputparseer
p = inputParser();
p.CaseSensitive = false;
p.addOptional('tolX',1e-5); % option for optimset
p.addOptional('tolFun',1e-5); % option for optimset
p.addOptional('Display','iter'); % Display option for optimset
p.addOptional('dt',0.1); % time step for the fitting
p.parse(varargin{:});
%%%%%%%%%%%%%%%%%%%%%%%%%%
tolX = p.Results.tolX ;
tolFun = p.Results.tolFun ;
Display = p.Results.Display ;
dt = p.Results.dt ;
%% Options for lsqcurvfit
options=optimset('TolX',tolX,'TolFun',tolFun,...
'MaxFunEvals',1200,'Display',Display);
%% Initial conditions and basic checks
% Write the target input into a matrix
Q(Q<0)=0; % negative values are not possible
R(R<0)=0; % negative values are not possible
D(D<0)=0; % negative values are not possible
if isempty(R)
warning(' No data available for "Recovered" ')
input = [Q;D]; % In this aprticular case, Q is actually the number of active + recovered cases
else
input = [Q;R;D];
end
if size(time,1)>size(time,2) && size(time,2)==1, time = time';end
if size(time,1)>1 && size(time,2)>1, error('Time should be a vector');end
%% Definition of the new, refined, time vector for the numerical solution
fs = 1./dt;
tTarget = round(datenum(time-time(1))*fs)/fs; % Number of days with one decimal
t = tTarget(1):dt:tTarget(end); % oversample to ensure that the algorithm converges
%% Preliminary fitting
% Decide which function to use for lambda and get first estimate of lambda
% Preliminary fitting for lambda to find the best approximation
% The final fitting is done considering simulatneously the different
% parameters since the equations are coupled
if ~isempty(R) % If there exists information on the recovered cases
[guess,lambdaFun] = getLambdaFun(tTarget,Q,R,guess);
else
lambdaFun = @(a,t) a(1)./(1+exp(-a(2)*(t-a(3)))); % default function
end
% Get a first estimate of kappa
try
[guess,kappaFun] = getKappaFun(tTarget,Q,D,guess);
catch exception
warning('Failure to fit the death rate. A poor fit is expected!');
end
%% Main fitting
modelFun1 = @SEIQRDP_for_fitting; % transform a nested function into anonymous function
if isempty(R)
% Significantly constraint the death rate
kappaMax = guess(8:10)*1.05; % Constrain the guess if no R available
kappaMin = guess(8:10)*0.95; % Constrain the guess if no R available
lambdaMax = [1 1 100]; % bound the guess around the initial fit
lambdaMin = [0 0 0]; % bound the guess around the initial fit
if kappaMax(3)<1e-1
kappaMax(3) = 100;
kappaMin(3) = 0;
end
else
kappaMax = guess(8:10)*2.0; % bound the guess around the initial fit
kappaMin = guess(8:10)/2.0; % bound the guess around the initial fit
lambdaMax = guess(5:7)*2.0; % bound the guess around the initial fit
lambdaMin = guess(5:7)/2.0; % bound the guess around the initial fit
if kappaMax(3)<1e-1
kappaMax(3) = 20;
kappaMin(3) = 0;
end
if lambdaMax(3)<1e-1
lambdaMax(3) = 20;
lambdaMin(3) = 0;
end
end
ub = [1, 5, 1, 1, lambdaMax, kappaMax]; % upper bound of the parameters
lb = [0, 0, 0, 0, lambdaMin, kappaMin]; % lower bound of the parameters
% call Lsqcurvefit
[Coeff] = lsqcurvefit(@(para,t) modelFun1(para,t),...
guess,tTarget(:)',input,lb,ub,options);
%% Write the fitted coeff in the outputs
alpha1 = abs(Coeff(1));
beta1 = abs(Coeff(2));
gamma1 = abs(Coeff(3));
delta1 = abs(Coeff(4));
Lambda1 = abs(Coeff(5:7));
Kappa1 = abs(Coeff(8:10));
%% nested functions
function [output] = SEIQRDP_for_fitting(para,t0)
% I simply rename the inputs
alpha = abs(para(1));
beta = abs(para(2));
gamma = abs(para(3));
delta = abs(para(4));
lambda0 = abs(para(5:7));
kappa0 = abs(para(8:10));
%% Initial conditions
N = numel(t);
Y = zeros(7,N); % There are seven different states
Y(2,1) = E0;
Y(3,1) = I0;
Y(4,1) = Q(1);
if ~isempty(R)
Y(5,1) = R(1);
Y(1,1) = Npop-Q(1)-R(1)-D(1)-E0-I0;
else
Y(1,1) = Npop-Q(1)-D(1)-E0-I0;
end
Y(6,1) = D(1);
if round(sum(Y(:,1))-Npop)~=0
error(['the sum must be zero because the total population',...
' (including the deads) is assumed constant']);
end
%%
modelFun = @(Y,A,F) A*Y + F;
lambda = lambdaFun(lambda0,t);
kappa = kappaFun(kappa0,t);
% Very large recovery rate should not occur but can lead to
% numerical errors.
if lambda>10, warning('lambda is abnormally high'); end
% ODE resolution
for ii=1:N-1
A = getA(alpha,gamma,delta,lambda(ii),kappa(ii));
SI = Y(1,ii)*Y(3,ii);
F = zeros(7,1);
F(1:2,1) = [-beta/Npop;beta/Npop].*SI;
Y(:,ii+1) = RK4(modelFun,Y(:,ii),A,F,dt);
end
Q1 = Y(4,1:N);
R1 = Y(5,1:N);
D1 = Y(6,1:N);
Q1 = interp1(t,Q1,t0);
R1 = interp1(t,R1,t0);
D1 = interp1(t,D1,t0);
if ~isempty(R)
output = ([Q1;R1;D1]);
else
output = ([Q1+R1;D1]);
end
end
function [A] = getA(alpha,gamma,delta,lambda,kappa)
% [A] = getA(alpha,gamma,delta,lambda,kappa) computes the matrix A
% that is found in: dY/dt = A*Y + F
%
% Inputs:
% alpha: scalar [1x1]: protection rate
% beta: scalar [1x1]: infection rate
% gamma: scalar [1x1]: Inverse of the average latent time
% delta: scalar [1x1]: rate of people entering in quarantine
% lambda: scalar [1x1]: cure rate
% kappa: scalar [1x1]: mortality rate
% Output:
% A: matrix: [7x7]
A = zeros(7);
% S
A(1,1) = -alpha;
% E
A(2,2) = -gamma;
% I
A(3,2:3) = [gamma,-delta];
% Q
A(4,3:4) = [delta,-kappa-lambda];
% R
A(5,4) = lambda;
% D
A(6,4) = kappa;
% P
A(7,1) = alpha;
end
function [Y] = RK4(Fun,Y,A,F,dt)
% NUmerical trick: the parameters are assumed constant between
% two time steps.
% Runge-Kutta of order 4
k_1 = Fun(Y,A,F);
k_2 = Fun(Y+0.5*dt*k_1,A,F);
k_3 = Fun(Y+0.5*dt*k_2,A,F);
k_4 = Fun(Y+k_3*dt,A,F);
% output
Y = Y + (1/6)*(k_1+2*k_2+2*k_3+k_4)*dt;
end
function [guess,kappaFun] = getKappaFun(tTarget,Q,D,guess)
% [guess,kappaFun] = getKappaFun(tTarget,Q,D,guess) provides a first
% estimate of the death rate, to faciliate convergence of the main
% algorithm.
%
% Input:
%
% tTarget: vector [1xN]: time as double
% Q: vector [1xN] of the target time-histories of the quarantined cases
% D: vector [1xN] of the target time-histories of the dead cases
% guess: vector [1x9] Initial guess for kappa
%
% Output
% guess: vector [1x9] Updated intial guess
% kappaFun: Empirical fucntion for the death rate
% If less than 20 reported deceased, the death rate won't be
% reliable. Therefore, no preliminary fitting is done.
if max(D)<10
kappaFun = @(a,t) a(1)./(exp(a(2)*(t-a(3))) + exp(-a(2)*(t-a(3))));
else
try
opt=optimset('TolX',1e-6,'TolFun',1e-6,'Display','off');
% myFun1 = @(a,t) a(1).*exp(-a(2)*(t+(a(3))));
myFun1 = @(a,t) a(1)./(exp(a(2)*(t-a(3))) + exp(-a(2)*(t-a(3))));
myFun2 = @(a,t) a(1).*exp(-(a(2)*(t-a(3))).^2);
myFun3 = @(a,t) a(1) + exp(-a(2)*(t+a(3)));
rate = (diff(D)./median(diff(tTarget(:))))./Q(2:end);
x = tTarget(2:end);
% A death rate larger than 3 is abnormally high. It is not
% used for the fitting.
rate(abs(rate)>3)=nan;
% Remove death rate = 0 if the majority number of death is not
% zero
if numel(find(rate==0))/numel(rate) <0.5
rate(abs(rate)==0)=nan;
end
[coeff1,r1] = lsqcurvefit(@(para,t) myFun1(para,t),...
guess(8:10),x(~isnan(rate)),rate(~isnan(rate)),[0 0 0],[1 1 100],opt);
[coeff2,r2] = lsqcurvefit(@(para,t) myFun2(para,t),...
guess(8:10),x(~isnan(rate)),rate(~isnan(rate)),[0 0 0],[1 1 100],opt);
[coeff3,r3] = lsqcurvefit(@(para,t) myFun3(para,t),...
guess(8:10),x(~isnan(rate)),rate(~isnan(rate)),[0 0 0],[1 1 100],opt);
%
% figure;plot(x,rate,x,myFun1(coeff1,x),'r',x,myFun2(coeff2,x),'g',x,myFun3(coeff3,x),'b')
minR = min([r1,r2,r3]);
if r1==minR
kappaGuess = coeff1;
kappaFun = myFun1;
elseif r2==minR
kappaGuess = coeff2;
kappaFun = myFun2;
elseif r3==minR
kappaFun = myFun3;
kappaGuess = coeff3;
end
guess(8:10) = kappaGuess; % update guess
catch exceptionK
disp(exceptionK)
kappaFun = @(a,t) a(1)./(exp(a(2)*(t-a(3))) + exp(-a(2)*(t-a(3))));
end
end
end
function [guess,lambdaFun] = getLambdaFun(tTarget,Q,R,guess)
% [guess,lambdaFun] = getLambdaFun(tTarget,Q,R,guess) provides a first
% estimate of the death rate, to faciliate convergence of the main
% algorithm.
%
% Input:
%
% tTarget: vector [1xN]: time as double
% Q: vector [1xN] of the target time-histories of the quarantined cases
% R: vector [1xN] of the target time-histories of the recovered cases
% guess: vector [1x9] Initial guess for kappa
%
% Output
% guess: vector [1x9] Updated intial guess
% lambdaFun: Empirical fucntion for the recovery rate
% If less than 20 reported deceased, the death rate won't be
% reliable. Therefore, no preliminary fitting is done.
% If less than 20 reported recovered, the death rate won't be
% reliable. Therefore, no preliminary fitting is done.
if max(R)<20
lambdaFun = @(a,t) a(1)./(1+exp(-a(2)*(t-a(3))));
else
try
opt=optimset('TolX',1e-6,'TolFun',1e-6,'Display','off');
% Two empirical functions are evaluated
myFun1 = @(a,t) a(1)./(1+exp(-a(2)*(t-a(3))));
myFun2 = @(a,t) a(1) + exp(-a(2)*(t+a(3)));
% Compute the recovery rate from the data (noisy data)
rate = diff(R)./median(diff(tTarget(:)))./Q(2:end);
x = tTarget(2:end);
% A daily rate larger than one is abnormally high. It is not
% used for the fitting. A daily recovered rate of zero is
% either abnormally low or reflects an insufficient number
% of recovered cases. It is not used either for the fitting
rate(abs(rate)>1|abs(rate)==0)=nan;
[coeff1,r1] = lsqcurvefit(@(para,t) myFun1(para,t),...
guess(5:7),x(~isnan(rate)),rate(~isnan(rate)),[0 0 0],[1 1 100],opt);
[coeff2,r2] = lsqcurvefit(@(para,t) myFun2(para,t),...
guess(5:7),x(~isnan(rate)),rate(~isnan(rate)),[0 0 0],[1 1 100],opt);
% figure;plot(x,rate,x,myFun1(coeff1,x),'r',x,myFun2(coeff2,x),'g--')
% myFun1 is more stable on a long term persepective
% % If coeff2 have reached the upper boundaries, myFUn1 is
% chosen
if r1<r2 || coeff2(1)>0.99 || coeff2(2)>4.9
lambdaGuess = coeff1;
lambdaFun = myFun1;
else
lambdaGuess = coeff2;
lambdaFun = myFun2;
end
guess(5:7) = lambdaGuess; % update guess
catch exceptionL
disp(exceptionL)
lambdaFun = @(a,t) a(1)./(1+exp(-a(2)*(t-a(3))));
end
end
end
end