forked from ttrftech/NanoVNA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
si5351.c
473 lines (442 loc) · 16.6 KB
/
si5351.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
/*
* Copyright (c) 2014-2015, TAKAHASHI Tomohiro (TTRFTECH) [email protected]
* Modified by DiSlord [email protected]
* All rights reserved.
*
* This is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* The software is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include "hal.h"
#include "nanovna.h"
#include "si5351.h"
// Enable cache for SI5351 CLKX_CONTROL register, little speedup exchange
#define USE_CLK_CONTROL_CACHE TRUE
// XTAL frequency on si5351
#define XTALFREQ 26000000U
// MCLK (processor clock if set, audio codec) frequency clock
#define CLK2_FREQUENCY 8000000U
// Fixed PLL mode multiplier (used in band 1)
#define PLL_N 32
// I2C address on bus (only 0x60 for Si5351A in 10-Pin MSOP)
#define SI5351_I2C_ADDR 0x60
static uint8_t current_band = 0;
static uint32_t current_freq = 0;
static int32_t current_offset = FREQUENCY_OFFSET;
// Minimum value is 2, freq change apply at next dsp measure, and need skip it
#define DELAY_NORMAL 2
// Delay for bands (depend set band 1 more fast (can change before next dsp buffer ready, need wait additional interval)
#define DELAY_BAND_1 3
#define DELAY_BAND_2 2
// Band changes need set delay after reset PLL
#define DELAY_BANDCHANGE_1 3
#define DELAY_BANDCHANGE_2 3
// Delay after set new PLL values, and send reset (on band 1 unstable if less then 900, on 4000-5000 no amplitude spike on change)
#define DELAY_RESET_PLL 5000
uint32_t si5351_get_frequency(void)
{
return current_freq;
}
void si5351_set_frequency_offset(int32_t offset)
{
current_offset = offset;
current_freq = 0; // reset freq, for
}
static void
si5351_bulk_write(const uint8_t *buf, int len)
{
i2cAcquireBus(&I2CD1);
(void)i2cMasterTransmitTimeout(&I2CD1, SI5351_I2C_ADDR, buf, len, NULL, 0, 1000);
i2cReleaseBus(&I2CD1);
}
#if 0
static bool si5351_bulk_read(uint8_t reg, uint8_t* buf, int len)
{
i2cAcquireBus(&I2CD1);
msg_t mr = i2cMasterTransmitTimeout(&I2CD1, SI5351_I2C_ADDR, ®, 1, buf, len, 1000);
i2cReleaseBus(&I2CD1);
return mr == MSG_OK;
}
static void si5351_wait_pll_lock(void)
{
uint8_t status;
int count = 100;
do{
status=0xFF;
si5351_bulk_read(0, &status, 1);
if ((status & 0x60) == 0) // PLLA and PLLB locked
return;
}while (--count);
}
#endif
static inline void
si5351_write(uint8_t reg, uint8_t dat)
{
uint8_t buf[] = { reg, dat };
si5351_bulk_write(buf, 2);
}
// register addr, length, data, ...
const uint8_t si5351_configs[] = {
2, SI5351_REG_3_OUTPUT_ENABLE_CONTROL, 0xff,
4, SI5351_REG_16_CLK0_CONTROL, SI5351_CLK_POWERDOWN, SI5351_CLK_POWERDOWN, SI5351_CLK_POWERDOWN,
2, SI5351_REG_183_CRYSTAL_LOAD, SI5351_CRYSTAL_LOAD_8PF,
// All of this init code run late on sweep
#if 0
// setup PLL (26MHz * 32 = 832MHz, 32/2-2=14)
9, SI5351_REG_PLL_A, /*P3*/0, 1, /*P1*/0, 14, 0, /*P3/P2*/0, 0, 0,
9, SI5351_REG_PLL_B, /*P3*/0, 1, /*P1*/0, 14, 0, /*P3/P2*/0, 0, 0,
// RESET PLL
2, SI5351_REG_177_PLL_RESET, SI5351_PLL_RESET_A | SI5351_PLL_RESET_B | 0x0C, //
// setup multisynth (832MHz / 104 = 8MHz, 104/2-2=50)
9, SI5351_REG_58_MULTISYNTH2, /*P3*/0, 1, /*P1*/0, 50, 0, /*P2|P3*/0, 0, 0,
2, SI5351_REG_18_CLK2_CONTROL, SI5351_CLK_DRIVE_STRENGTH_2MA | SI5351_CLK_INPUT_MULTISYNTH_N | SI5351_CLK_INTEGER_MODE,
#endif
2, SI5351_REG_3_OUTPUT_ENABLE_CONTROL, ~(SI5351_CLK0_EN|SI5351_CLK1_EN|SI5351_CLK2_EN),
0 // sentinel
};
void
si5351_init(void)
{
const uint8_t *p = si5351_configs;
while (*p) {
uint8_t len = *p++;
si5351_bulk_write(p, len);
p += len;
}
}
static const uint8_t disable_output[] = {
SI5351_REG_16_CLK0_CONTROL,
SI5351_CLK_POWERDOWN, // CLK 0
SI5351_CLK_POWERDOWN, // CLK 1
SI5351_CLK_POWERDOWN // CLK 2
};
/* Get the appropriate starting point for the PLL registers */
static const uint8_t msreg_base[] = {
SI5351_REG_42_MULTISYNTH0,
SI5351_REG_50_MULTISYNTH1,
SI5351_REG_58_MULTISYNTH2,
};
static const uint8_t clkctrl[] = {
SI5351_REG_16_CLK0_CONTROL,
SI5351_REG_17_CLK1_CONTROL,
SI5351_REG_18_CLK2_CONTROL
};
// Reset PLL need then band changes
static void si5351_reset_pll(uint8_t mask)
{
// Writing a 1<<5 will reset PLLA, 1<<7 reset PLLB, this is a self clearing bits.
// !!! Need delay before reset PLL for apply PLL freq changes before
chThdSleepMicroseconds(DELAY_RESET_PLL);
si5351_write(SI5351_REG_177_PLL_RESET, mask | 0x0C);
}
void si5351_disable_output(void)
{
si5351_write(SI5351_REG_3_OUTPUT_ENABLE_CONTROL, 0xFF);
si5351_bulk_write(disable_output, sizeof(disable_output));
current_band = 0;
}
void si5351_enable_output(void)
{
si5351_write(SI5351_REG_3_OUTPUT_ENABLE_CONTROL, ~(SI5351_CLK0_EN|SI5351_CLK1_EN|SI5351_CLK2_EN));
//si5351_reset_pll(SI5351_PLL_RESET_A | SI5351_PLL_RESET_B);
current_freq = 0;
current_band = 0;
}
// Set PLL freq = XTALFREQ * (mult + num/denom)
static void si5351_setupPLL(uint8_t pllSource, /* SI5351_REG_PLL_A or SI5351_REG_PLL_B */
uint32_t mult,
uint32_t num,
uint32_t denom)
{
/* Feedback Multisynth Divider Equation
* where: a = mult, b = num and c = denom
* P1 register is an 18-bit value using following formula:
* P1[17:0] = 128 * mult + int((128*num)/denom) - 512
* P2 register is a 20-bit value using the following formula:
* P2[19:0] = (128 * num) % denom
* P3 register is a 20-bit value using the following formula:
* P3[19:0] = denom
*/
/* Set the main PLL config registers */
mult <<= 7;
num <<= 7;
uint32_t P1 = mult - 512; // Integer mode
uint32_t P2 = 0;
uint32_t P3 = 1;
if (num) { // Fractional mode
P1+= num / denom;
P2 = num % denom;
P3 = denom;
}
// Pll MSN(A|B) registers Datasheet
uint8_t reg[9];
reg[0] = pllSource; // SI5351_REG_PLL_A or SI5351_REG_PLL_B
reg[1] = (P3 & 0x0FF00) >> 8; // MSN_P3[15: 8]
reg[2] = (P3 & 0x000FF); // MSN_P3[ 7: 0]
reg[3] = (P1 & 0x30000) >> 16; // MSN_P1[17:16]
reg[4] = (P1 & 0x0FF00) >> 8; // MSN_P1[15: 8]
reg[5] = (P1 & 0x000FF); // MSN_P1[ 7: 0]
reg[6] = ((P3 & 0xF0000) >> 12) | ((P2 & 0xF0000) >> 16); // MSN_P3[19:16] | MSN_P2[19:16]
reg[7] = (P2 & 0x0FF00) >> 8; // MSN_P2[15: 8]
reg[8] = (P2 & 0x000FF); // MSN_P2[ 7: 0]
si5351_bulk_write(reg, 9);
}
// Set Multisynth divider = (div + num/denom) * rdiv
static void
si5351_setupMultisynth(uint8_t channel,
uint32_t div, // 4,6,8, 8+ ~ 900
uint32_t num,
uint32_t denom,
uint32_t rdiv, // SI5351_R_DIV_1~128
uint8_t chctrl) // SI5351_REG_16_CLKX_CONTROL settings
{
/* Output Multisynth Divider Equations
* where: a = div, b = num and c = denom
* P1 register is an 18-bit value using following formula:
* P1[17:0] = 128 * a + int((128*b)/c) - 512
* P2 register is a 20-bit value using the following formula:
* P2[19:0] = (128 * b) % c
* P3 register is a 20-bit value using the following formula:
* P3[19:0] = c
*/
/* Set the main PLL config registers */
uint32_t P1 = 0;
uint32_t P2 = 0;
uint32_t P3 = 1;
if (div == 4)
rdiv|= SI5351_DIVBY4;
else {
num<<=7;
div<<=7;
P1 = div - 512; // Integer mode
if (num) { // Fractional mode
P1+= num / denom;
P2 = num % denom;
P3 = denom;
}
}
/* Set the MSx config registers */
uint8_t reg[9];
reg[0] = msreg_base[channel]; // SI5351_REG_42_MULTISYNTH0, SI5351_REG_50_MULTISYNTH1, SI5351_REG_58_MULTISYNTH2
reg[1] = (P3 & 0x0FF00)>>8; // MSx_P3[15: 8]
reg[2] = (P3 & 0x000FF); // MSx_P3[ 7: 0]
reg[3] = ((P1 & 0x30000)>>16)| rdiv; // Rx_DIV[2:0] | MSx_DIVBY4[1:0] | MSx_P1[17:16]
reg[4] = (P1 & 0x0FF00)>> 8; // MSx_P1[15: 8]
reg[5] = (P1 & 0x000FF); // MSx_P1[ 7: 0]
reg[6] = ((P3 & 0xF0000)>>12)|((P2 & 0xF0000)>>16); // MSx_P3[19:16] | MSx_P2[19:16]
reg[7] = (P2 & 0x0FF00)>>8; // MSx_P2[15: 8]
reg[8] = (P2 & 0x000FF); // MSx_P2[ 7: 0]
si5351_bulk_write(reg, 9);
/* Configure the clk control and enable the output */
uint8_t dat = chctrl | SI5351_CLK_INPUT_MULTISYNTH_N;
if (num == 0)
dat |= SI5351_CLK_INTEGER_MODE;
#if USE_CLK_CONTROL_CACHE == TRUE
// Use cache for this reg, not update if not change
static uint8_t clk_cache[3];
if (clk_cache[channel]!=dat) {
si5351_write(clkctrl[channel], dat);
clk_cache[channel]=dat;
}
#else
si5351_write(clkctrl[channel], dat);
#endif
}
// Find better approximate values for n/d
#define MAX_DENOMINATOR ((1 << 20) - 1)
static inline void approximate_fraction(uint32_t *n, uint32_t *d)
{
// cf. https://github.com/python/cpython/blob/master/Lib/fractions.py#L227
uint32_t denom = *d;
if (denom > MAX_DENOMINATOR) {
uint32_t num = *n;
uint32_t p0 = 0, q0 = 1, p1 = 1, q1 = 0;
while (denom != 0) {
uint32_t a = num / denom;
uint32_t b = num % denom;
uint32_t q2 = q0 + a*q1;
if (q2 > MAX_DENOMINATOR)
break;
uint32_t p2 = p0 + a*p1;
p0 = p1; q0 = q1; p1 = p2; q1 = q2;
num = denom; denom = b;
}
*n = p1;
*d = q1;
}
}
// Setup Multisynth divider for get correct output freq if fixed PLL = pllfreq
static void
si5351_set_frequency_fixedpll(uint8_t channel, uint64_t pllfreq, uint32_t freq, uint32_t rdiv, uint8_t chctrl)
{
uint32_t denom = freq;
uint32_t div = pllfreq / denom; // range: 8 ~ 1800
uint32_t num = pllfreq % denom;
approximate_fraction(&num, &denom);
si5351_setupMultisynth(channel, div, num, denom, rdiv, chctrl);
}
// Setup PLL freq if Multisynth divider fixed = div (need get output = freq/mul)
static void
si5351_setupPLL_freq(uint32_t pllSource, uint32_t freq, uint32_t div, uint32_t mul)
{
uint32_t denom = XTALFREQ * mul;
uint64_t pllfreq = (uint64_t)freq * div;
uint32_t multi = pllfreq / denom;
uint32_t num = pllfreq % denom;
approximate_fraction(&num, &denom);
si5351_setupPLL(pllSource, multi, num, denom);
}
#if 0
static void
si5351_set_frequency_fixeddiv(uint8_t channel, uint32_t pll, uint32_t freq, uint32_t div,
uint8_t chctrl, uint32_t mul)
{
si5351_setupPLL_freq(pll, freq, div, mul);
si5351_setupMultisynth(channel, div, 0, 1, SI5351_R_DIV_1, chctrl);
}
void
si5351_set_frequency(int channel, uint32_t freq, uint8_t drive_strength)
{
if (freq <= 100000000) {
si5351_setupPLL(SI5351_PLL_B, 32, 0, 1);
si5351_set_frequency_fixedpll(channel, SI5351_PLL_B, PLLFREQ, freq, SI5351_R_DIV_1, drive_strength, 1);
} else if (freq < 150000000) {
si5351_set_frequency_fixeddiv(channel, SI5351_PLL_B, freq, 6, drive_strength, 1);
} else {
si5351_set_frequency_fixeddiv(channel, SI5351_PLL_B, freq, 4, drive_strength, 1);
}
}
#endif
/*
* Frequency generation divide on 3 band
* Band 1
* 1~100MHz fixed PLL = XTALFREQ * PLL_N, fractional divider
* Band 2
* 100~150MHz fractional PLL = 600- 900MHz, fixed divider 'fdiv = 6'
* Band 3
* 150~300MHz fractional PLL = 600-1200MHz, fixed divider 'fdiv = 4'
*
* For FREQ_HARMONICS = 300MHz - band range is:
* +-----------------------------------------------------------------------------------------------------------------------+
* | Band 1 | Band 2 | Band 3 | Band 2 | Band 3 |
* +-----------------------------------------------------------------------------------------------------------------------+
* | Direct mode x1 : x1 | x3 : x5 | x5-x7 | x7-x9 | x9-x11 |
* +-----------------------------------------------------------------------------------------------------------------------+
* | 50kHz - 100MHz | 100 - 150MHz | 150 - 300MHz | 300-450MHz | 450-900MHz | 900-1500MHz | 1500-2100MHz | 2100-2700MHz |
* +-----------------------------------------------------------------------------------------------------------------------+
* | f = 50kHz-300MHz | f=100-150 | f=150-300 | f=150-300 | f=214-300 | f=233-300 |
* | of = 50kHz-300MHz |of= 60- 90 |of= 90-180 |of=128-215 |of=166-234 |of=190-246 |
* +-----------------------------------------------------------------------------------------------------------------------+
*/
static inline uint8_t
si5351_get_band(uint32_t freq)
{
if (freq < 100000000U) return 1;
if (freq < 150000000U) return 2;
return 3;
}
/*
* Maximum supported frequency = FREQ_HARMONICS * 9U
* configure output as follows:
* CLK0: frequency + offset
* CLK1: frequency
* CLK2: fixed 8MHz
*/
int
si5351_set_frequency(uint32_t freq, uint8_t drive_strength)
{
uint8_t band;
int delay = DELAY_NORMAL;
if (freq == current_freq)
return delay;
else if (current_freq > freq) // Reset band on sweep begin (if set range 150-600, fix error then 600 MHz band 2 or 3 go back)
current_band = 0;
current_freq = freq;
uint32_t ofreq = freq + current_offset;
uint32_t mul = 1, omul = 1;
uint32_t rdiv = SI5351_R_DIV_1;
uint32_t fdiv;
// Fix possible incorrect input
drive_strength&=SI5351_CLK_DRIVE_STRENGTH_MASK;
if (freq >= config.harmonic_freq_threshold * 7U) {
mul = 9;
omul = 11;
} else if (freq >= config.harmonic_freq_threshold * 5U) {
mul = 7;
omul = 9;
} else if (freq >= config.harmonic_freq_threshold * 3U) {
mul = 5;
omul = 7;
} else if (freq >= config.harmonic_freq_threshold) {
mul = 3;
omul = 5;
} else if (freq <= 500000U) {
rdiv = SI5351_R_DIV_64;
freq<<= 6;
ofreq<<= 6;
} else if (freq <= 4000000U) {
rdiv = SI5351_R_DIV_8;
freq<<= 3;
ofreq<<= 3;
}
band = si5351_get_band(freq / mul);
switch (band) {
case 1:
// Setup CH0 and CH1 constant PLLA freq at band change, and set CH2 freq =
// CLK2_FREQUENCY
if (current_band != 1) {
si5351_setupPLL(SI5351_REG_PLL_A, PLL_N, 0, 1);
si5351_set_frequency_fixedpll(
2, XTALFREQ * PLL_N, CLK2_FREQUENCY, SI5351_R_DIV_1,
SI5351_CLK_DRIVE_STRENGTH_2MA | SI5351_CLK_PLL_SELECT_A);
delay = DELAY_BANDCHANGE_1;
} else {
delay = DELAY_BAND_1;
}
// Calculate and set CH0 and CH1 divider
si5351_set_frequency_fixedpll(0, (uint64_t)omul * XTALFREQ * PLL_N, ofreq, rdiv,
drive_strength | SI5351_CLK_PLL_SELECT_A);
si5351_set_frequency_fixedpll(1, (uint64_t)mul * XTALFREQ * PLL_N, freq, rdiv,
drive_strength | SI5351_CLK_PLL_SELECT_A);
break;
case 2: // fdiv = 6
case 3: // fdiv = 4;
fdiv = (band == 2) ? 6 : 4;
// Setup CH0 and CH1 constant fdiv divider at change
if (current_band != band) {
si5351_setupMultisynth(0, fdiv, 0, 1, SI5351_R_DIV_1,
drive_strength | SI5351_CLK_PLL_SELECT_A);
si5351_setupMultisynth(1, fdiv, 0, 1, SI5351_R_DIV_1,
drive_strength | SI5351_CLK_PLL_SELECT_B);
delay = DELAY_BANDCHANGE_2;
} else {
delay = DELAY_BAND_2;
}
// Calculate and set CH0 and CH1 PLL freq
si5351_setupPLL_freq(SI5351_REG_PLL_A, ofreq, fdiv,
omul); // set PLLA freq = (ofreq/omul)*fdiv
si5351_setupPLL_freq(SI5351_REG_PLL_B, freq, fdiv,
mul); // set PLLB freq = ( freq/ mul)*fdiv
// Calculate CH2 freq = CLK2_FREQUENCY, depend from calculated before CH1 PLLB = (freq/mul)*fdiv
si5351_set_frequency_fixedpll(
2, (uint64_t)freq * fdiv, CLK2_FREQUENCY * mul, SI5351_R_DIV_1,
SI5351_CLK_DRIVE_STRENGTH_2MA | SI5351_CLK_PLL_SELECT_B);
break;
}
if (current_band != band) {
si5351_reset_pll(SI5351_PLL_RESET_A|SI5351_PLL_RESET_B);
current_band = band;
}
return delay;
}