-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtorch_geom_neighbor_sampler.py
895 lines (751 loc) · 36.1 KB
/
torch_geom_neighbor_sampler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
import copy
import math
import sys
import warnings
from typing import Callable, Dict, List, Optional, Tuple, Union
import torch
from torch import Tensor
import torch_geometric.typing
from torch_geometric.data import (
Data,
FeatureStore,
GraphStore,
HeteroData,
remote_backend_utils,
)
from torch_geometric.data.graph_store import EdgeLayout
from torch_geometric.sampler import (
BaseSampler,
EdgeSamplerInput,
HeteroSamplerOutput,
NegativeSampling,
NodeSamplerInput,
SamplerOutput,
)
from torch_geometric.sampler.base import DataType, NumNeighbors, SubgraphType
from torch_geometric.sampler.utils import remap_keys, to_csc, to_hetero_csc
from torch_geometric.typing import EdgeType, NodeType, OptTensor
import os, sys
from neo4j import GraphDatabase
NumNeighborsType = Union[NumNeighbors, List[int], Dict[EdgeType, List[int]]]
class NeighborSampler(BaseSampler):
r"""An implementation of an in-memory (heterogeneous) neighbor sampler used
by :class:`~torch_geometric.loader.NeighborLoader`.
"""
def __init__(
self,
data: Union[Data, HeteroData, Tuple[FeatureStore, GraphStore]],
num_neighbors: NumNeighborsType,
subgraph_type: Union[SubgraphType, str] = 'directional',
replace: bool = False,
disjoint: bool = False,
temporal_strategy: str = 'uniform',
time_attr: Optional[str] = None,
weight_attr: Optional[str] = None,
is_sorted: bool = False,
share_memory: bool = False,
# Deprecated:
directed: bool = True,
):
self.feature_store = None # Will be populated later if available
if not directed:
subgraph_type = SubgraphType.induced
warnings.warn(f"The usage of the 'directed' argument in "
f"'{self.__class__.__name__}' is deprecated. Use "
f"`subgraph_type='induced'` instead.")
if (not torch_geometric.typing.WITH_PYG_LIB and sys.platform == 'linux'
and subgraph_type != SubgraphType.induced):
warnings.warn(f"Using '{self.__class__.__name__}' without a "
f"'pyg-lib' installation is deprecated and will be "
f"removed soon. Please install 'pyg-lib' for "
f"accelerated neighborhood sampling")
self.data_type = DataType.from_data(data)
self.neo4j_driver = GraphDatabase.driver('bolt://localhost:7687', auth=('neo4j', 'password'))
if self.data_type == DataType.homogeneous:
self.num_nodes = data.num_nodes
self.node_time: Optional[Tensor] = None
self.edge_time: Optional[Tensor] = None
if time_attr is not None:
if data.is_node_attr(time_attr):
self.node_time = data[time_attr]
elif data.is_edge_attr(time_attr):
self.edge_time = data[time_attr]
else:
raise ValueError(
f"The time attribute '{time_attr}' is neither a "
f"node-level or edge-level attribute")
# Convert the graph data into CSC format for sampling:
self.colptr, self.row, self.perm = to_csc(
data, device='cpu', share_memory=share_memory,
is_sorted=is_sorted, src_node_time=self.node_time,
edge_time=self.edge_time)
if self.edge_time is not None and self.perm is not None:
self.edge_time = self.edge_time[self.perm]
self.edge_weight: Optional[Tensor] = None
if weight_attr is not None:
self.edge_weight = data[weight_attr]
if self.perm is not None:
self.edge_weight = self.edge_weight[self.perm]
elif self.data_type == DataType.heterogeneous:
self.node_types, self.edge_types = data.metadata()
self.num_nodes = {k: data[k].num_nodes for k in self.node_types}
self.node_time: Optional[Dict[NodeType, Tensor]] = None
self.edge_time: Optional[Dict[EdgeType, Tensor]] = None
if time_attr is not None:
is_node_level_time = is_edge_level_time = False
for store in data.node_stores:
if time_attr in store:
is_node_level_time = True
for store in data.edge_stores:
if time_attr in store:
is_edge_level_time = True
if is_node_level_time and is_edge_level_time:
raise ValueError(
f"The time attribute '{time_attr}' holds both "
f"node-level and edge-level information")
if not is_node_level_time and not is_edge_level_time:
raise ValueError(
f"The time attribute '{time_attr}' is neither a "
f"node-level or edge-level attribute")
if is_node_level_time:
self.node_time = data.collect(time_attr)
else:
self.edge_time = data.collect(time_attr)
# Conversion to/from C++ string type: Since C++ cannot take
# dictionaries with tuples as key as input, edge type triplets need
# to be converted into single strings.
self.to_rel_type = {k: '__'.join(k) for k in self.edge_types}
self.to_edge_type = {v: k for k, v in self.to_rel_type.items()}
# Convert the graph data into CSC format for sampling:
colptr_dict, row_dict, self.perm = to_hetero_csc(
data, device='cpu', share_memory=share_memory,
is_sorted=is_sorted, node_time_dict=self.node_time,
edge_time_dict=self.edge_time)
self.row_dict = remap_keys(row_dict, self.to_rel_type)
self.colptr_dict = remap_keys(colptr_dict, self.to_rel_type)
if self.edge_time is not None:
for edge_type, edge_time in self.edge_time.items():
if self.perm.get(edge_type, None) is not None:
edge_time = edge_time[self.perm[edge_type]]
self.edge_time[edge_type] = edge_time
self.edge_time = remap_keys(self.edge_time, self.to_rel_type)
self.edge_weight: Optional[Dict[EdgeType, Tensor]] = None
if weight_attr is not None:
self.edge_weight = data.collect(weight_attr)
for edge_type, edge_weight in self.edge_weight.items():
if self.perm.get(edge_type, None) is not None:
edge_weight = edge_weight[self.perm[edge_type]]
self.edge_weight[edge_type] = edge_weight
self.edge_weight = remap_keys(self.edge_weight,
self.to_rel_type)
else: # self.data_type == DataType.remote
feature_store, graph_store = data
self.feature_store = feature_store
# Obtain graph metadata:
attrs = [attr for attr in feature_store.get_all_tensor_attrs()]
edge_attrs = graph_store.get_all_edge_attrs()
self.edge_types = list(set(attr.edge_type for attr in edge_attrs))
if weight_attr is not None:
raise NotImplementedError(
f"'weight_attr' argument not yet supported within "
f"'{self.__class__.__name__}' for "
f"'(FeatureStore, GraphStore)' inputs")
if time_attr is not None:
# If the `time_attr` is present, we expect that `GraphStore`
# holds all edges sorted by destination, and within local
# neighborhoods, node indices should be sorted by time.
# TODO (matthias, manan) Find an alternative way to ensure.
for edge_attr in edge_attrs:
if edge_attr.layout == EdgeLayout.CSR:
raise ValueError(
"Temporal sampling requires that edges are stored "
"in either COO or CSC layout")
if not edge_attr.is_sorted:
raise ValueError(
"Temporal sampling requires that edges are "
"sorted by destination, and by source time "
"within local neighborhoods")
# We obtain all features with `node_attr.name=time_attr`:
time_attrs = [
copy.copy(attr) for attr in attrs
if attr.attr_name == time_attr
]
if not self.is_hetero:
self.node_types = [None]
self.num_nodes = max(edge_attrs[0].size)
self.edge_weight: Optional[Tensor] = None
self.node_time: Optional[Tensor] = None
self.edge_time: Optional[Tensor] = None
if time_attr is not None:
if len(time_attrs) != 1:
raise ValueError("Temporal sampling specified but did "
"not find any temporal data")
time_attrs[0].index = None # Reset index for full data.
time_tensor = feature_store.get_tensor(time_attrs[0])
# Currently, we determine whether to use node-level or
# edge-level temporal sampling based on the attribute name.
if time_attr == 'time':
self.node_time = time_tensor
else:
self.edge_time = time_tensor
self.row, self.colptr, self.perm = graph_store.csc()
else:
node_types = [
attr.group_name for attr in attrs
if isinstance(attr.group_name, str)
]
self.node_types = list(set(node_types))
self.num_nodes = {
node_type: remote_backend_utils.size(*data, node_type)
for node_type in self.node_types
}
self.edge_weight: Optional[Dict[EdgeType, Tensor]] = None
self.node_time: Optional[Dict[NodeType, Tensor]] = None
self.edge_time: Optional[Dict[EdgeType, Tensor]] = None
if time_attr is not None:
for attr in time_attrs: # Reset index for full data.
attr.index = None
time_tensors = feature_store.multi_get_tensor(time_attrs)
time = {
attr.group_name: time_tensor
for attr, time_tensor in zip(time_attrs, time_tensors)
}
group_names = [attr.group_name for attr in time_attrs]
if all([isinstance(g, str) for g in group_names]):
self.node_time = time
elif all([isinstance(g, tuple) for g in group_names]):
self.edge_time = time
else:
raise ValueError(
f"Found time attribute '{time_attr}' for both "
f"node-level and edge-level types")
# Conversion to/from C++ string type (see above):
self.to_rel_type = {k: '__'.join(k) for k in self.edge_types}
self.to_edge_type = {v: k for k, v in self.to_rel_type.items()}
# Convert the graph data into CSC format for sampling:
# row_dict, colptr_dict, self.perm = graph_store.csc()
# self.row_dict = remap_keys(row_dict, self.to_rel_type)
# self.colptr_dict = remap_keys(colptr_dict, self.to_rel_type)
self.row_dict = None
self.colptr_dict = None
if (self.edge_time is not None
and not torch_geometric.typing.WITH_EDGE_TIME_NEIGHBOR_SAMPLE):
raise ImportError("Edge-level temporal sampling requires a "
"more recent 'pyg-lib' installation")
if (self.edge_weight is not None
and not torch_geometric.typing.WITH_WEIGHTED_NEIGHBOR_SAMPLE):
raise ImportError("Weighted neighbor sampling requires "
"'pyg-lib>=0.3.0'")
self.num_neighbors = num_neighbors
self.replace = replace
self.subgraph_type = SubgraphType(subgraph_type)
self.disjoint = disjoint
self.temporal_strategy = temporal_strategy
@property
def num_neighbors(self) -> NumNeighbors:
return self._num_neighbors
@num_neighbors.setter
def num_neighbors(self, num_neighbors: NumNeighborsType):
if isinstance(num_neighbors, NumNeighbors):
self._num_neighbors = num_neighbors
else:
self._num_neighbors = NumNeighbors(num_neighbors)
@property
def is_hetero(self) -> bool:
if self.data_type == DataType.homogeneous:
return False
if self.data_type == DataType.heterogeneous:
return True
# self.data_type == DataType.remote
return self.edge_types != [None]
@property
def is_temporal(self) -> bool:
return self.node_time is not None or self.edge_time is not None
@property
def disjoint(self) -> bool:
return self._disjoint or self.is_temporal
@disjoint.setter
def disjoint(self, disjoint: bool):
self._disjoint = disjoint
# Node-based sampling #####################################################
def sample_from_nodes(
self,
inputs: NodeSamplerInput,
) -> Union[SamplerOutput, HeteroSamplerOutput]:
out = node_sample(inputs, self._sample)
if self.subgraph_type == SubgraphType.bidirectional:
out = out.to_bidirectional()
return out
# Edge-based sampling #####################################################
def sample_from_edges(
self,
inputs: EdgeSamplerInput,
neg_sampling: Optional[NegativeSampling] = None,
) -> Union[SamplerOutput, HeteroSamplerOutput]:
out = edge_sample(inputs, self._sample, self.num_nodes, self.disjoint,
self.node_time, neg_sampling)
if self.subgraph_type == SubgraphType.bidirectional:
out = out.to_bidirectional()
return out
# Other Utilities #########################################################
@property
def edge_permutation(self) -> Union[OptTensor, Dict[EdgeType, OptTensor]]:
### OVERRIDDEN!
return None # self.perm
# Helper functions ########################################################
def _sample(
self,
seed: Union[Tensor, Dict[NodeType, Tensor]],
seed_time: Optional[Union[Tensor, Dict[NodeType, Tensor]]] = None,
**kwargs,
) -> Union[SamplerOutput, HeteroSamplerOutput]:
r"""Implements neighbor sampling by calling either :obj:`pyg-lib` (if
installed) or :obj:`torch-sparse` (if installed) sampling routines.
"""
if isinstance(seed, dict): # Heterogeneous sampling:
if True:
dtype = torch.int64
seed = {k: v.to(dtype) for k, v in seed.items()}
args = (
self.neo4j_driver,
self.node_types,
self.edge_types,
seed,
self.num_neighbors.get_mapped_values(self.edge_types),
self.node_time,
)
if torch_geometric.typing.WITH_EDGE_TIME_NEIGHBOR_SAMPLE:
args += (self.edge_time, )
args += (seed_time, )
if torch_geometric.typing.WITH_WEIGHTED_NEIGHBOR_SAMPLE:
args += (self.edge_weight, )
args += (
True, # csc
self.replace,
self.subgraph_type != SubgraphType.induced, # directed
self.disjoint,
self.temporal_strategy,
True # return_edge_id
)
row, col, node, edge, num_sampled_nodes, num_sampled_edges = self.feature_store.sampler.sample(*args)
batch = None
if self.disjoint:
node = {k: v.t().contiguous() for k, v in node.items()}
batch = {k: v[0] for k, v in node.items()}
node = {k: v[1] for k, v in node.items()}
elif (torch_geometric.typing.WITH_PYG_LIB
and self.subgraph_type != SubgraphType.induced):
# TODO Support induced subgraph sampling in `pyg-lib`.
# TODO (matthias) Ideally, `seed` inherits dtype from `colptr`
colptrs = list(self.colptr_dict.values())
dtype = colptrs[0].dtype if len(colptrs) > 0 else torch.int64
seed = {k: v.to(dtype) for k, v in seed.items()}
args = (
self.node_types,
self.edge_types,
self.colptr_dict,
self.row_dict,
seed,
self.num_neighbors.get_mapped_values(self.edge_types),
self.node_time,
)
if torch_geometric.typing.WITH_EDGE_TIME_NEIGHBOR_SAMPLE:
args += (self.edge_time, )
args += (seed_time, )
if torch_geometric.typing.WITH_WEIGHTED_NEIGHBOR_SAMPLE:
args += (self.edge_weight, )
args += (
True, # csc
self.replace,
self.subgraph_type != SubgraphType.induced,
self.disjoint,
self.temporal_strategy,
# TODO (matthias) `return_edge_id` if edge features present
True, # return_edge_id
)
out = torch.ops.pyg.hetero_neighbor_sample(*args)
row, col, node, edge, batch = out[:4] + (None, )
# `pyg-lib>0.1.0` returns sampled number of nodes/edges:
num_sampled_nodes = num_sampled_edges = None
if len(out) >= 6:
num_sampled_nodes, num_sampled_edges = out[4:6]
if self.disjoint:
node = {k: v.t().contiguous() for k, v in node.items()}
batch = {k: v[0] for k, v in node.items()}
node = {k: v[1] for k, v in node.items()}
elif torch_geometric.typing.WITH_TORCH_SPARSE:
if self.disjoint:
if self.subgraph_type == SubgraphType.induced:
raise ValueError("'disjoint' sampling not supported "
"for neighbor sampling with "
"`subgraph_type='induced'`")
else:
raise ValueError("'disjoint' sampling not supported "
"for neighbor sampling via "
"'torch-sparse'. Please install "
"'pyg-lib' for improved and "
"optimized sampling routines.")
out = torch.ops.torch_sparse.hetero_neighbor_sample(
self.node_types,
self.edge_types,
self.colptr_dict,
self.row_dict,
seed, # seed_dict
self.num_neighbors.get_mapped_values(self.edge_types),
self.num_neighbors.num_hops,
self.replace,
self.subgraph_type != SubgraphType.induced,
)
node, row, col, edge, batch = out + (None, )
num_sampled_nodes = num_sampled_edges = None
else:
raise ImportError(f"'{self.__class__.__name__}' requires "
f"either 'pyg-lib' or 'torch-sparse'")
if num_sampled_edges is not None:
num_sampled_edges = remap_keys(
num_sampled_edges,
self.to_edge_type,
)
data = HeteroSamplerOutput(
node=node,
row=remap_keys(row, self.to_edge_type),
col=remap_keys(col, self.to_edge_type),
edge=remap_keys(edge, self.to_edge_type),
batch=batch,
num_sampled_nodes=num_sampled_nodes,
num_sampled_edges=num_sampled_edges,
)
# print("python3.9-pyg data", data)
return data
else: # Homogeneous sampling:
if True:
args = (
self.neo4j_driver,
self.node_types,
self.edge_types,
{'PRODUCT': seed.to(torch.int64)}, # instead of seed.to(self.colptr.dtype)
{'PRODUCT__LINK__PRODUCT': self.num_neighbors.get_mapped_values()},
self.node_time,
)
if torch_geometric.typing.WITH_EDGE_TIME_NEIGHBOR_SAMPLE:
args += (self.edge_time, )
args += (seed_time, )
if torch_geometric.typing.WITH_WEIGHTED_NEIGHBOR_SAMPLE:
args += (self.edge_weight, )
args += (
True, # csc
self.replace,
self.subgraph_type != SubgraphType.induced, # directed
self.disjoint,
self.temporal_strategy,
True # return_edge_id
)
row, col, node, edge, num_sampled_nodes, num_sampled_edges = self.feature_store.sampler.sample(*args)
batch = None
if self.disjoint:
batch, node = node.t().contiguous()
# TODO Support induced subgraph sampling in `pyg-lib`.
elif (torch_geometric.typing.WITH_PYG_LIB
and self.subgraph_type != SubgraphType.induced):
args = (
self.colptr,
self.row,
# TODO (matthias) `seed` should inherit dtype from `colptr`
seed.to(self.colptr.dtype),
self.num_neighbors.get_mapped_values(),
self.node_time,
)
if torch_geometric.typing.WITH_EDGE_TIME_NEIGHBOR_SAMPLE:
args += (self.edge_time, )
args += (seed_time, )
if torch_geometric.typing.WITH_WEIGHTED_NEIGHBOR_SAMPLE:
args += (self.edge_weight, )
args += (
True, # csc
self.replace,
self.subgraph_type != SubgraphType.induced,
self.disjoint,
self.temporal_strategy,
# TODO (matthias) `return_edge_id` if edge features present
True, # return_edge_id
)
out = torch.ops.pyg.neighbor_sample(*args)
row, col, node, edge, batch = out[:4] + (None, )
# `pyg-lib>0.1.0` returns sampled number of nodes/edges:
num_sampled_nodes = num_sampled_edges = None
if len(out) >= 6:
num_sampled_nodes, num_sampled_edges = out[4:6]
if self.disjoint:
batch, node = node.t().contiguous()
elif torch_geometric.typing.WITH_TORCH_SPARSE:
if self.disjoint:
raise ValueError("'disjoint' sampling not supported for "
"neighbor sampling via 'torch-sparse'. "
"Please install 'pyg-lib' for improved "
"and optimized sampling routines.")
out = torch.ops.torch_sparse.neighbor_sample(
self.colptr,
self.row,
seed, # seed
self.num_neighbors.get_mapped_values(),
self.replace,
self.subgraph_type != SubgraphType.induced,
)
node, row, col, edge, batch = out + (None, )
num_sampled_nodes = num_sampled_edges = None
else:
raise ImportError(f"'{self.__class__.__name__}' requires "
f"either 'pyg-lib' or 'torch-sparse'")
return SamplerOutput(
node=node,
row=row,
col=col,
edge=edge,
batch=batch,
num_sampled_nodes=num_sampled_nodes,
num_sampled_edges=num_sampled_edges,
)
# Sampling Utilities ##########################################################
def node_sample(
inputs: NodeSamplerInput,
sample_fn: Callable,
) -> Union[SamplerOutput, HeteroSamplerOutput]:
r"""Performs sampling from a :class:`NodeSamplerInput`, leveraging a
sampling function that accepts a seed and (optionally) a seed time as
input. Returns the output of this sampling procedure.
"""
if inputs.input_type is not None: # Heterogeneous sampling:
seed = {inputs.input_type: inputs.node}
seed_time = None
if inputs.time is not None:
seed_time = {inputs.input_type: inputs.time}
else: # Homogeneous sampling:
seed = inputs.node
seed_time = inputs.time
out = sample_fn(seed, seed_time)
out.metadata = (inputs.input_id, inputs.time)
return out
def edge_sample(
inputs: EdgeSamplerInput,
sample_fn: Callable,
num_nodes: Union[int, Dict[NodeType, int]],
disjoint: bool,
node_time: Optional[Union[Tensor, Dict[str, Tensor]]] = None,
neg_sampling: Optional[NegativeSampling] = None,
) -> Union[SamplerOutput, HeteroSamplerOutput]:
r"""Performs sampling from an edge sampler input, leveraging a sampling
function of the same signature as `node_sample`.
"""
input_id = inputs.input_id
src = inputs.row
dst = inputs.col
edge_label = inputs.label
edge_label_time = inputs.time
input_type = inputs.input_type
src_time = dst_time = edge_label_time
assert edge_label_time is None or disjoint
assert isinstance(num_nodes, (dict, int))
if not isinstance(num_nodes, dict):
num_src_nodes = num_dst_nodes = num_nodes
else:
num_src_nodes = num_nodes[input_type[0]]
num_dst_nodes = num_nodes[input_type[-1]]
num_pos = src.numel()
num_neg = 0
# Negative Sampling #######################################################
if neg_sampling is not None:
# When we are doing negative sampling, we append negative information
# of nodes/edges to `src`, `dst`, `src_time`, `dst_time`.
# Later on, we can easily reconstruct what belongs to positive and
# negative examples by slicing via `num_pos`.
num_neg = math.ceil(num_pos * neg_sampling.amount)
if neg_sampling.is_binary():
# In the "binary" case, we randomly sample negative pairs of nodes.
if isinstance(node_time, dict):
src_node_time = node_time.get(input_type[0])
else:
src_node_time = node_time
src_neg = neg_sample(src, neg_sampling, num_src_nodes, src_time,
src_node_time)
src = torch.cat([src, src_neg], dim=0)
if isinstance(node_time, dict):
dst_node_time = node_time.get(input_type[-1])
else:
dst_node_time = node_time
dst_neg = neg_sample(dst, neg_sampling, num_dst_nodes, dst_time,
dst_node_time)
dst = torch.cat([dst, dst_neg], dim=0)
if edge_label is None:
edge_label = torch.ones(num_pos)
size = (num_neg, ) + edge_label.size()[1:]
edge_neg_label = edge_label.new_zeros(size)
edge_label = torch.cat([edge_label, edge_neg_label])
if edge_label_time is not None:
src_time = dst_time = edge_label_time.repeat(
1 + math.ceil(neg_sampling.amount))[:num_pos + num_neg]
elif neg_sampling.is_triplet():
# In the "triplet" case, we randomly sample negative destinations.
if isinstance(node_time, dict):
dst_node_time = node_time.get(input_type[-1])
else:
dst_node_time = node_time
dst_neg = neg_sample(dst, neg_sampling, num_dst_nodes, dst_time,
dst_node_time)
dst = torch.cat([dst, dst_neg], dim=0)
assert edge_label is None
if edge_label_time is not None:
dst_time = edge_label_time.repeat(1 + neg_sampling.amount)
# Heterogeneus Neighborhood Sampling ######################################
if input_type is not None:
seed_time_dict = None
if input_type[0] != input_type[-1]: # Two distinct node types:
if not disjoint:
src, inverse_src = src.unique(return_inverse=True)
dst, inverse_dst = dst.unique(return_inverse=True)
seed_dict = {input_type[0]: src, input_type[-1]: dst}
if edge_label_time is not None: # Always disjoint.
seed_time_dict = {
input_type[0]: src_time,
input_type[-1]: dst_time,
}
else: # Only a single node type: Merge both source and destination.
seed = torch.cat([src, dst], dim=0)
if not disjoint:
seed, inverse_seed = seed.unique(return_inverse=True)
seed_dict = {input_type[0]: seed}
if edge_label_time is not None: # Always disjoint.
seed_time_dict = {
input_type[0]: torch.cat([src_time, dst_time], dim=0),
}
out = sample_fn(seed_dict, seed_time_dict)
# Enhance `out` by label information ##################################
if disjoint:
for key, batch in out.batch.items():
out.batch[key] = batch % num_pos
if neg_sampling is None or neg_sampling.is_binary():
if disjoint:
if input_type[0] != input_type[-1]:
edge_label_index = torch.arange(num_pos + num_neg)
edge_label_index = edge_label_index.repeat(2).view(2, -1)
else:
edge_label_index = torch.arange(2 * (num_pos + num_neg))
edge_label_index = edge_label_index.view(2, -1)
else:
if input_type[0] != input_type[-1]:
edge_label_index = torch.stack([
inverse_src,
inverse_dst,
], dim=0)
else:
edge_label_index = inverse_seed.view(2, -1)
out.metadata = (input_id, edge_label_index, edge_label, src_time)
elif neg_sampling.is_triplet():
if disjoint:
src_index = torch.arange(num_pos)
if input_type[0] != input_type[-1]:
dst_pos_index = torch.arange(num_pos)
# `dst_neg_index` needs to be offset such that indices with
# offset `num_pos` belong to the same triplet:
dst_neg_index = torch.arange(
num_pos, seed_dict[input_type[-1]].numel())
dst_neg_index = dst_neg_index.view(-1, num_pos).t()
else:
dst_pos_index = torch.arange(num_pos, 2 * num_pos)
dst_neg_index = torch.arange(
2 * num_pos, seed_dict[input_type[-1]].numel())
dst_neg_index = dst_neg_index.view(-1, num_pos).t()
else:
if input_type[0] != input_type[-1]:
src_index = inverse_src
dst_pos_index = inverse_dst[:num_pos]
dst_neg_index = inverse_dst[num_pos:]
else:
src_index = inverse_seed[:num_pos]
dst_pos_index = inverse_seed[num_pos:2 * num_pos]
dst_neg_index = inverse_seed[2 * num_pos:]
dst_neg_index = dst_neg_index.view(num_pos, -1).squeeze(-1)
out.metadata = (
input_id,
src_index,
dst_pos_index,
dst_neg_index,
src_time,
)
# Homogeneus Neighborhood Sampling ########################################
else:
seed = torch.cat([src, dst], dim=0)
seed_time = None
if not disjoint:
seed, inverse_seed = seed.unique(return_inverse=True)
if edge_label_time is not None: # Always disjoint.
seed_time = torch.cat([src_time, dst_time])
out = sample_fn(seed, seed_time)
# Enhance `out` by label information ##################################
if neg_sampling is None or neg_sampling.is_binary():
if disjoint:
out.batch = out.batch % num_pos
edge_label_index = torch.arange(seed.numel()).view(2, -1)
else:
edge_label_index = inverse_seed.view(2, -1)
out.metadata = (input_id, edge_label_index, edge_label, src_time)
elif neg_sampling.is_triplet():
if disjoint:
out.batch = out.batch % num_pos
src_index = torch.arange(num_pos)
dst_pos_index = torch.arange(num_pos, 2 * num_pos)
# `dst_neg_index` needs to be offset such that indices with
# offset `num_pos` belong to the same triplet:
dst_neg_index = torch.arange(2 * num_pos, seed.numel())
dst_neg_index = dst_neg_index.view(-1, num_pos).t()
else:
src_index = inverse_seed[:num_pos]
dst_pos_index = inverse_seed[num_pos:2 * num_pos]
dst_neg_index = inverse_seed[2 * num_pos:]
dst_neg_index = dst_neg_index.view(num_pos, -1).squeeze(-1)
out.metadata = (
input_id,
src_index,
dst_pos_index,
dst_neg_index,
src_time,
)
return out
def neg_sample(
seed: Tensor,
neg_sampling: NegativeSampling,
num_nodes: int,
seed_time: Optional[Tensor],
node_time: Optional[Tensor],
) -> Tensor:
num_neg = math.ceil(seed.numel() * neg_sampling.amount)
# TODO: Do not sample false negatives.
if node_time is None:
return neg_sampling.sample(num_neg, num_nodes)
# If we are in a temporal-sampling scenario, we need to respect the
# timestamp of the given nodes we can use as negative examples.
# That is, we can only sample nodes for which `node_time <= seed_time`.
# For now, we use a greedy algorithm which randomly samples negative
# nodes and discard any which do not respect the temporal constraint.
# We iteratively repeat this process until we have sampled a valid node for
# each seed.
# TODO See if this greedy algorithm here can be improved.
assert seed_time is not None
num_samples = math.ceil(neg_sampling.amount)
seed_time = seed_time.view(1, -1).expand(num_samples, -1)
out = neg_sampling.sample(num_samples * seed.numel(), num_nodes)
out = out.view(num_samples, seed.numel())
mask = node_time[out] > seed_time # holds all invalid samples.
neg_sampling_complete = False
for i in range(5): # pragma: no cover
num_invalid = int(mask.sum())
if num_invalid == 0:
neg_sampling_complete = True
break
# Greedily search for alternative negatives.
out[mask] = tmp = neg_sampling.sample(num_invalid, num_nodes)
mask[mask.clone()] = node_time[tmp] >= seed_time[mask]
if not neg_sampling_complete: # pragma: no cover
# Not much options left. In that case, we set remaining negatives
# to the node with minimum timestamp.
out[mask] = node_time.argmin()
return out.view(-1)[:num_neg]