-
Notifications
You must be signed in to change notification settings - Fork 134
/
Copy pathshow_log.py
124 lines (105 loc) · 3.86 KB
/
show_log.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import glob
import re
import numpy as np
import sys
root_dirs = ['ria_exps']
num_logs = 5
if len(sys.argv) > 1:
root_dirs = [sys.argv[1]]
if len(sys.argv) > 2:
excluded = sys.argv[2:]
else:
excluded = None
top1_pattern = re.compile('top1=(\-*\d+(?:\.\d+)?)')
top5_pattern = re.compile('top5=(\-*\d+(?:\.\d+)?)')
loss_pattern = re.compile('loss=(\-*\d+(?:\.\d+)?)')
speed_pattern = re.compile(',(\-*\d+(?:\.\d+)?)example/s')
def get_value_by_pattern(pattern, line):
return float(re.findall(pattern, line)[0])
def parse_top1_top5_loss_from_log_line(log_line):
top1 = get_value_by_pattern(top1_pattern, log_line)
top5 = get_value_by_pattern(top5_pattern, log_line)
loss = get_value_by_pattern(loss_pattern, log_line)
return top1, top5, loss
log_files = []
for root_dir in root_dirs:
fs = glob.glob('{}/*/log.txt'.format(root_dir))
log_files += fs
for file_path in log_files:
if 'lrsRZ' in file_path:
continue
skip = False
if excluded is not None:
for ex in excluded:
if ex in file_path:
skip = True
break
if skip:
continue
top1_list = []
top5_list = []
loss_list = []
baseline_speed = 0
exp_speed = 0
with open(file_path, 'r') as f:
origin_lines = f.readlines()
for l in origin_lines:
if 'baseline speed' in l:
baseline_speed = get_value_by_pattern(speed_pattern, l)
elif 'bbf speed' in l or 'exp speed' in l or 'ent speed' in l:
exp_speed = get_value_by_pattern(speed_pattern, l)
break
log_lines = [l for l in origin_lines if 'top1' in l and 'top5' in l and 'loss' in l and 'beginning' not in l]
avg_loss = '----'
params = '----'
train_speed = '----'
deploy_speed = '----'
for l in origin_lines[-5:]:
if 'TRAIN LOSS collected over last' in l:
avg_loss = l.strip()[-8:]
if 'num of params in hdf5' in l:
params = l.strip().split('=')[1]
if 'TRAIN speed' in l:
train_speed = float(l.strip().split('=')[-1])
train_speed = '{:.2f}'.format(train_speed)
if 'DEPLOY TEST' in l:
ll = l.strip().split(' ')
examples = int(ll[4])
secs = float(ll[6])
deploy_speed = examples / secs
deploy_speed = '{:.2f}'.format(deploy_speed)
last_lines = log_lines[-num_logs:]
for l in last_lines:
if 'top1' not in l or 'loss' not in l or 'top5' not in l:
continue
top1, top5, loss = parse_top1_top5_loss_from_log_line(l)
top1_list.append(top1)
top5_list.append(top5)
loss_list.append(loss)
if len(top1_list) < num_logs:
continue
# network_try_arg = file_path.split('/')[1].replace('_train', '')
network_try_arg = file_path.replace('_train/log.txt', '')
last_validation = last_lines[-1]
last_epoch_pattern = re.compile('epoch (\d+)')
last_epoch = int(last_epoch_pattern.findall(last_validation)[0])
if exp_speed > 0:
speedup = exp_speed / baseline_speed
else:
speedup = 0
thresh = ''
flops_r = ''
for ol in origin_lines[-70:-1]:
# print(ol)
if 'thres 1e-05' in ol:
thresh = '1e-5'
elif 'thres 1e-06' in ol:
thresh = '1e-6'
if 'FLOPs' in ol:
flops_r = ol[ol.index('FLOPs'):].strip()
msg = '{} \t maxtop1={:.3f}, spdup={:.3f}, mean={:.3f}, loss={:.5f}, {} logs, tr_loss={}, para={}, ts={}, ds={}, last={}'.format(network_try_arg,
np.max(top1_list), speedup, np.mean(top1_list), np.mean(loss_list),
len(top1_list), avg_loss, params, train_speed, deploy_speed, last_epoch)
if len(flops_r) > 0:
msg += ' ' + thresh + ':' + flops_r
print(msg)