-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfat32_lib.c
326 lines (297 loc) · 11.5 KB
/
fat32_lib.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
#include <string.h>
#include <fcntl.h>
struct fat_BS {
u_int8_t boot_jmp[3];
u_char oem_name[8];
u_int16_t bytes_per_sector;
u_int8_t sectors_per_cluster;
u_int16_t reserved_sector_count;
u_int8_t table_count;
u_int16_t root_entry_count;
u_int16_t total_sectors_16;
u_int8_t media_type;
u_int16_t table_size_16;
u_int16_t sectors_per_track;
u_int16_t head_side_count;
u_int32_t hidden_sector_count;
u_int32_t total_sectors_32;
u_int32_t table_size_32;
u_int16_t extended_flags;
u_int16_t fat_version;
u_int32_t root_cluster;
u_int16_t fat_info;
u_int16_t backup_BS_sector;
u_int8_t reserved_0[12];
u_int8_t drive_number;
u_int8_t reserved_1;
u_int8_t boot_signature;
u_int32_t volume_id;
u_char volume_label[11];
u_char fat_type_label[8];
}__attribute__((packed));
struct fs_info {
u_int32_t lead_signature;
u_int8_t reserved_0[480];
u_int32_t another_signature;
u_int32_t last_free_cluster;
u_int32_t available;
u_int8_t reserved_1[12];
u_int32_t tail_signature;
}__attribute__((packed));
struct dir_entry {
u_char file_name[8];
u_char extension[3];
u_int8_t attributes;
u_int8_t reserved;
u_int8_t crt_time_0;
u_int16_t crt_time_1;
u_int16_t crt_date;
u_int16_t last_date_access;
u_int16_t high_cluster_num;
u_int16_t last_mod_time;
u_int16_t last_mod_date;
u_int16_t low_cluster_num;
u_int32_t file_size;
}__attribute__((packed));
struct long_filename {
u_int8_t order;
u_char _2_byte_chars[10];
u_int8_t attribute;
u_int8_t long_entry_type;
u_int8_t checksum;
u_char _2_byte_chars_next[12];
u_int16_t always_zero;
u_char _2_byte_chars_last[4];
}__attribute__((packed));
struct dir_value {
u_char *filename;
u_char type;
u_int32_t first_cluster;
u_int32_t size;
void *next;
};
struct partition_value {
int32_t device_fd;
u_int32_t cluster_size;
u_int32_t first_data_sector;
u_int32_t active_cluster;
struct fat_BS *fat_boot;
struct fs_info *fs_info;
};
u_int32_t
get_fat_table_value(u_int32_t active_cluster, u_int32_t first_fat_sector, u_int32_t sector_size, int32_t fd) {
u_int8_t *FAT_table = malloc(sector_size);
u_int32_t fat_offset = active_cluster * 4;
u_int32_t fat_sector = first_fat_sector + (fat_offset / sector_size);
u_int32_t ent_offset = fat_offset % sector_size;
pread(fd, FAT_table, sector_size, fat_sector * sector_size);
u_int32_t table_value = *(u_int32_t *) &FAT_table[ent_offset] & 0x0FFFFFFF;
free(FAT_table);
return table_value;
}
u_int32_t get_first_sector(struct partition_value *part, u_int32_t cluster) {
return ((cluster - 2) * part->fat_boot->sectors_per_cluster) + part->first_data_sector;
}
u_int32_t read_file_cluster(struct partition_value *part, u_int32_t cluster, char *buf) {
u_int32_t first_sector = get_first_sector(part, cluster);
pread(part->device_fd, buf, part->cluster_size, first_sector * part->fat_boot->bytes_per_sector);
return get_fat_table_value(cluster, part->fat_boot->reserved_sector_count, part->fat_boot->bytes_per_sector, part->device_fd);
}
struct dir_value *init_dir_value(struct dir_entry *entry, u_char *filename) {
struct dir_value *dir_val = calloc(1, sizeof(struct dir_value));
dir_val->filename = calloc(1, 256);
strcpy((char*)dir_val->filename, (char*)filename);
dir_val->size = entry->file_size;
dir_val->type = ((entry->attributes & 0x20) == 0x20) ? 'f' : 'd';
dir_val->first_cluster = entry->high_cluster_num << 4;
dir_val->first_cluster =
dir_val->first_cluster + (entry->low_cluster_num & 0xFFFF);
if (dir_val->first_cluster == 0)
dir_val->first_cluster = 2;
return dir_val;
}
void destroy_dir_value(struct dir_value *dir_val) {
if (dir_val) {
free(dir_val->filename);
struct dir_value *next = dir_val;
while (next != NULL) {
struct dir_value *current = next;
next = current->next;
free(current);
}
}
}
struct dir_value *read_dir(u_int32_t first_cluster, struct partition_value *value) {
u_int32_t cluster_size = value->cluster_size;
u_int32_t sector_size = value->fat_boot->bytes_per_sector;
u_int32_t current_cluster = first_cluster;
int32_t fd = value->device_fd;
u_int32_t first_sector = get_first_sector(value, current_cluster);
struct dir_entry *buf = calloc(1, cluster_size);
pread(fd, buf, cluster_size, first_sector * sector_size);
struct dir_value *first_dir_value = NULL;
struct dir_value *prev_dir_value = NULL;
struct dir_value *current_dir_value = NULL;
u_int8_t *order_bitmap = calloc(1, 32);
char *order[32];
u_int32_t long_name_counter = 0;
u_int8_t end_dir_reached = 0;
int32_t j = 0;
while (!end_dir_reached) {
struct dir_entry *entry = &buf[j++];
if ((cluster_size / sizeof(struct dir_entry)) <= (j)) {
// cluster limit reached
u_int32_t fat_record = get_fat_table_value(current_cluster, value->fat_boot->reserved_sector_count,
sector_size, value->device_fd);
if (fat_record >= 0x0FFFFFF7) {
// chain end reached or bad cluster...
end_dir_reached = 1;
} else {
current_cluster = fat_record;
u_int32_t current_sector = get_first_sector(value, current_cluster);
free(buf);
buf = calloc(1, cluster_size);
j = 0;
pread(fd, buf, cluster_size, current_sector * sector_size);
continue;
}
}
if (entry->file_name[0] == 0) {
// dir end
end_dir_reached = 1;
} else if (entry->file_name[0] == 0xE5) {
// unused entry - skip
continue;
} else if (entry->attributes == 0x0F) {
struct long_filename *filename = (struct long_filename *) entry;
// maximum order value == 0x1F
int32_t current_order = filename->order & 0x001F;
order[current_order] = calloc(1, 13);
order_bitmap[current_order] = 1;
char *current_buf = order[current_order];
int32_t buf_offset = 0;
for (int32_t i = 0; i < 10; i += 2) {
current_buf[buf_offset++] = (char)filename->_2_byte_chars[i];
}
for (int32_t i = 0; i < 12; i += 2) {
current_buf[buf_offset++] = (char)filename->_2_byte_chars_next[i];
}
for (int32_t i = 0; i < 4; i += 2) {
current_buf[buf_offset++] = (char)filename->_2_byte_chars_last[i];
}
long_name_counter++;
} else if ((entry->attributes & 0x10) == 0x10 || (entry->attributes & 0x20) == 0x20) {
if (!long_name_counter) {
char tmp_name[9];
char tmp_ext[4];
strncpy(tmp_name, (char*)entry->file_name, 8);
strncpy(tmp_ext, (char*)entry->extension, 3);
for (int32_t i = 7; i >= 0; --i) {
if (tmp_name[i] == 32) {
tmp_name[i] = 0;
} else {
break;
}
}
for (int32_t i = 2; i >= 0; --i) {
if (tmp_ext[i] == 32) {
tmp_ext[i] = 0;
} else {
break;
}
}
char *filename = calloc(1, 11);
strcpy(filename, tmp_name);
if (strlen(tmp_ext)) {
strcat(filename, ".");
strcat(filename, tmp_ext);
}
current_dir_value = init_dir_value(entry, (u_char*)filename);
if (first_dir_value == NULL)
first_dir_value = current_dir_value;
if (prev_dir_value != NULL)
prev_dir_value->next = current_dir_value;
prev_dir_value = current_dir_value;
} else {
u_char *tmp_str = calloc(1, long_name_counter * 13);
for (int32_t i = 0; i < 32; ++i) {
if (order_bitmap[i] == 1) {
strcat((char*)tmp_str, order[i]);
order_bitmap[i] = 0;
free(order[i]);
}
}
long_name_counter = 0;
current_dir_value = init_dir_value(entry, tmp_str);
if (first_dir_value == NULL)
first_dir_value = current_dir_value;
if (prev_dir_value != NULL)
prev_dir_value->next = current_dir_value;
prev_dir_value = current_dir_value;
}
}
}
free(order_bitmap);
free(buf);
return first_dir_value;
}
int32_t change_dir(struct partition_value *value, const u_char *dir_name) {
struct dir_value *dir_val = read_dir(value->active_cluster, value);
while (dir_val != NULL) {
if (dir_val->type == 'd' && strcmp((char*)dir_name, (char*)dir_val->filename) == 0) {
value->active_cluster = dir_val->first_cluster;
destroy_dir_value(dir_val);
return 1;
}
dir_val = dir_val->next;
}
destroy_dir_value(dir_val);
return 0;
}
struct partition_value *open_partition(const char *partition) {
char dev[256] = "/dev/";
strcat(dev, partition);
int32_t fd = open(dev, O_RDONLY, 00666);
struct fat_BS *fat_boot;
if (fd != -1) {
fat_boot = malloc(sizeof(struct fat_BS));
pread(fd, fat_boot, sizeof(struct fat_BS), 0);
u_int32_t total_sectors = fat_boot->total_sectors_32;
u_int32_t fat_size = (fat_boot->table_size_16 == 0) ? fat_boot->table_size_32 : fat_boot->table_size_16;
u_int32_t root_dir_sectors =
((fat_boot->root_entry_count * 32) + (fat_boot->bytes_per_sector - 1)) / fat_boot->bytes_per_sector;
u_int32_t first_data_sector =
fat_boot->reserved_sector_count + (fat_boot->table_count * fat_size) + root_dir_sectors;
u_int32_t data_sectors = total_sectors -
(fat_boot->reserved_sector_count + (fat_boot->table_count * fat_size) +
root_dir_sectors);
u_int32_t total_clusters = data_sectors / fat_boot->sectors_per_cluster;
struct fs_info *fs = malloc(sizeof(struct fs_info));
pread(fd, fs, sizeof(struct fs_info), fat_boot->fat_info * fat_boot->bytes_per_sector);
if (total_clusters >= 65525 && total_clusters < 268435445
&& fs->lead_signature == 0x41615252
&& fs->another_signature == 0x61417272
&& fs->tail_signature == 0xAA550000) {
// filesystem supported
} else {
// filesystem not supported
return NULL;
}
u_int32_t cluster_size = fat_boot->bytes_per_sector * fat_boot->sectors_per_cluster;
struct partition_value *part = malloc(sizeof(struct partition_value));
part->cluster_size = cluster_size;
part->device_fd = fd;
part->fat_boot = fat_boot;
part->fs_info = fs;
part->first_data_sector = first_data_sector;
part->active_cluster = fat_boot->root_cluster;
return part;
}
return NULL;
}
void close_partition(struct partition_value *part) {
free(part->fat_boot);
free(part->fs_info);
close(part->device_fd);
free(part);
}