forked from L0SG/relational-rnn-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrnn_models.py
110 lines (99 loc) · 5.01 KB
/
rnn_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import torch.nn as nn
import torch
class RNNModel(nn.Module):
"""Container module with an encoder, a recurrent module, and a decoder."""
def __init__(self, rnn_type, ntoken, ninp, nhid, nlayers, dropout=0.5, tie_weights=False, use_cudnn_version=True,
use_adaptive_softmax=False, cutoffs=None):
super(RNNModel, self).__init__()
self.use_cudnn_version = use_cudnn_version
self.drop = nn.Dropout(dropout)
self.encoder = nn.Embedding(ntoken, ninp)
if use_cudnn_version:
if rnn_type in ['LSTM', 'GRU']:
self.rnn = getattr(nn, rnn_type)(ninp, nhid, nlayers, dropout=dropout)
else:
try:
nonlinearity = {'RNN_TANH': 'tanh', 'RNN_RELU': 'relu'}[rnn_type]
except KeyError:
raise ValueError("""An invalid option for `--model` was supplied,
options are ['LSTM', 'GRU', 'RNN_TANH' or 'RNN_RELU']""")
self.rnn = nn.RNN(ninp, nhid, nlayers, nonlinearity=nonlinearity, dropout=dropout)
else:
if rnn_type in ['LSTM', 'GRU']:
rnn_type = str(rnn_type) + 'Cell'
rnn_modulelist = []
for i in range(nlayers):
rnn_modulelist.append(getattr(nn, rnn_type)(ninp, nhid))
if i < nlayers - 1:
rnn_modulelist.append(nn.Dropout(dropout))
self.rnn = nn.ModuleList(rnn_modulelist)
else:
raise ValueError("non-cudnn version of (RNNCell) is not implemented. use LSTM or GRU instead")
if not use_adaptive_softmax:
self.use_adaptive_softmax = use_adaptive_softmax
self.decoder = nn.Linear(nhid, ntoken)
# Optionally tie weights as in:
# "Using the Output Embedding to Improve Language Models" (Press & Wolf 2016)
# https://arxiv.org/abs/1608.05859
# and
# "Tying Word Vectors and Word Classifiers: A Loss Framework for Language Modeling" (Inan et al. 2016)
# https://arxiv.org/abs/1611.01462
if tie_weights:
if nhid != ninp:
raise ValueError('When using the tied flag, nhid must be equal to emsize')
self.decoder.weight = self.encoder.weight
else:
# simple linear layer of nhid output size. used for adaptive softmax after
# directly applying softmax at the hidden states is a bad idea
self.decoder_adaptive = nn.Linear(nhid, nhid)
self.use_adaptive_softmax = use_adaptive_softmax
self.cutoffs = cutoffs
if tie_weights:
print("Warning: if using adaptive softmax, tie_weights cannot be applied. Ignored.")
self.init_weights()
self.rnn_type = rnn_type
self.nhid = nhid
self.nlayers = nlayers
def init_weights(self):
initrange = 0.1
self.encoder.weight.data.uniform_(-initrange, initrange)
if not self.use_adaptive_softmax:
self.decoder.bias.data.zero_()
self.decoder.weight.data.uniform_(-initrange, initrange)
def forward(self, input, hidden):
emb = self.drop(self.encoder(input))
if self.use_cudnn_version:
output, hidden = self.rnn(emb, hidden)
else:
# for loop implementation with RNNCell
layer_input = emb
new_hidden = [[], []]
for idx_layer in range(0, self.nlayers + 1, 2):
output = []
hx, cx = hidden[0][int(idx_layer / 2)], hidden[1][int(idx_layer / 2)]
for idx_step in range(input.shape[0]):
hx, cx = self.rnn[idx_layer](layer_input[idx_step], (hx, cx))
output.append(hx)
output = torch.stack(output)
if idx_layer + 1 < self.nlayers:
output = self.rnn[idx_layer + 1](output)
layer_input = output
new_hidden[0].append(hx)
new_hidden[1].append(cx)
new_hidden[0] = torch.stack(new_hidden[0])
new_hidden[1] = torch.stack(new_hidden[1])
hidden = tuple(new_hidden)
output = self.drop(output)
if not self.use_adaptive_softmax:
decoded = self.decoder(output.view(output.size(0) * output.size(1), output.size(2)))
return decoded.view(output.size(0), output.size(1), decoded.size(1)), hidden
else:
decoded = self.decoder_adaptive(output.view(output.size(0) * output.size(1), output.size(2)))
return decoded.view(output.size(0), output.size(1), decoded.size(1)), hidden
def init_hidden(self, bsz):
weight = next(self.parameters())
if self.rnn_type == 'LSTM' or self.rnn_type == 'LSTMCell':
return (weight.new_zeros(self.nlayers, bsz, self.nhid),
weight.new_zeros(self.nlayers, bsz, self.nhid))
else:
return weight.new_zeros(self.nlayers, bsz, self.nhid)