forked from L0SG/relational-rnn-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
71 lines (58 loc) · 2.52 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import os
import torch
import numpy as np
class Dictionary(object):
def __init__(self):
self.word2idx = {}
self.idx2word = []
self.idx2count = []
def add_word(self, word):
if word not in self.word2idx:
self.idx2word.append(word)
self.idx2count.append(1)
self.word2idx[word] = len(self.idx2word) - 1
else:
self.idx2count[self.word2idx[word]] += 1
return self.word2idx[word]
def __len__(self):
return len(self.idx2word)
class Corpus(object):
def __init__(self, path):
self.dictionary = Dictionary()
tokens_train = self.add_corpus(os.path.join(path, 'train.txt'))
tokens_valid = self.add_corpus(os.path.join(path, 'valid.txt'))
tokens_test = self.add_corpus(os.path.join(path, 'test.txt'))
# sort the words by word frequency in descending order
# this is for using adaptive softmax: it assumes that the most frequent word get index 0
idx_argsorted = np.flip(np.argsort(self.dictionary.idx2count), axis=-1)
# re-create given the sorted ones
self.dictionary.idx2count = np.array(self.dictionary.idx2count)[idx_argsorted].tolist()
self.dictionary.idx2word = np.array(self.dictionary.idx2word)[idx_argsorted].tolist()
self.dictionary.word2idx = dict(zip(self.dictionary.idx2word,
np.arange(len(self.dictionary.idx2word)).tolist()))
self.train = self.tokenize(os.path.join(path, 'train.txt'), tokens_train)
self.valid = self.tokenize(os.path.join(path, 'valid.txt'), tokens_valid)
self.test = self.tokenize(os.path.join(path, 'test.txt'), tokens_test)
def add_corpus(self, path):
"""Tokenizes a text file."""
assert os.path.exists(path)
# Add words to the dictionary
with open(path, 'r', encoding="utf8") as f:
tokens = 0
for line in f:
words = line.split() + ['<eos>']
tokens += len(words)
for word in words:
self.dictionary.add_word(word)
return tokens
def tokenize(self, path, tokens):
# Tokenize file content
with open(path, 'r', encoding="utf8") as f:
ids = torch.LongTensor(tokens)
token = 0
for line in f:
words = line.split() + ['<eos>']
for word in words:
ids[token] = self.dictionary.word2idx[word]
token += 1
return ids