forked from carpedm20/SPIRAL-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathagent.py
454 lines (364 loc) · 16.4 KB
/
agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
import models
import replay
import rl_utils
import utils as ut
logger = ut.logging.get_logger()
image_reshaper = tf.contrib.gan.eval.eval_utils.image_reshaper
class Agent(object):
def __init__(self, args, server, cluster, env, queue_shapes,
trajectory_queue_size, replay_queue_size):
self.env = env
self.args = args
self.task = args.task
self.queue_shapes = queue_shapes
self.trajectory_queue_size = trajectory_queue_size
self.replay_queue_size = replay_queue_size
self.action_sizes = env.action_sizes
self.input_shape = list(self.env.observation_shape)
# used for summary
self._disc_step = 0
self._policy_step = 0
##################################
# Queue pipelines (ps/task=0~)
##################################
with tf.device('/job:ps/task:0'):
# TODO: we may need more than 1 queue
#for i in range(cluster.num_tasks('ps')):
if args.task != 1 or args.loss == 'l2':
self.trajectory_queue = tf.FIFOQueue(
self.trajectory_queue_size,
[tf.float32] * len(self.queue_shapes),
shapes=[shape for _, shape in self.queue_shapes],
names=[name for name, _ in self.queue_shapes],
shared_name='queue')
self.trajectory_queue_size_op = self.trajectory_queue.size()
if args.loss == 'gan':
self.replay_queue = tf.FIFOQueue(
self.replay_queue_size,
tf.float32,
shapes=dict(self.queue_shapes)['states'][1:],
shared_name='replay')
self.replay_queue_size_op = self.replay_queue.size()
else:
self.replay_queue = None
self.replay_queue_size_op = None
###########################
# Master policy (task!=1)
###########################
device = 'gpu' if self.task == 0 else 'cpu'
master_gpu = "/job:worker/task:{}/{}:0".format(self.args.task, device)
master_gpu_replica = tf.train. \
replica_device_setter(1, worker_device=master_gpu)
with tf.device(master_gpu_replica):
with tf.variable_scope("global"):
self.policy_step = tf.get_variable(
"policy_step", [], tf.int32,
initializer=tf.constant_initializer(0, dtype=tf.int32),
trainable=False)
self.disc_step = tf.get_variable(
"disc_step", [], tf.int32,
initializer=tf.constant_initializer(0, dtype=tf.int32),
trainable=False)
#master_cpu = "/job:worker/task:{}/cpu:0".format(self.args.task, device)
#master_cpu_replica = tf.train. \
# replica_device_setter(1, worker_device=master_cpu)
#with tf.device(master_cpu_replica):
# master should initialize discriminator
if args.task < 2 and args.loss == 'gan':
self.global_disc = models.Discriminator(
self.args, self.disc_step, self.input_shape,
self.env.norm, "global")
if args.task != 1 or args.loss == 'l2':
logger.debug(master_gpu)
with tf.device(master_gpu_replica):
self.prepare_master_network()
###########################
# Master policy network
###########################
if self.args.task == 0:
policy_batch_size = self.args.policy_batch_size
# XXX: may need this if you are lack of GPU memory
#policy_batch_size = int(self.args.policy_batch_size \
# / self.env.episode_length)
worker_device = "/job:worker/task:{}/cpu:0".format(self.task)
logger.debug(worker_device)
with tf.device(worker_device):
with tf.variable_scope("global"):
self.trajectory_dequeue = self.trajectory_queue. \
dequeue_many(policy_batch_size)
###########################
# Discriminator (task=1)
###########################
elif self.args.task == 1 and self.args.loss == 'gan':
device = 'gpu' if args.num_gpu > 0 else 'cpu'
worker_device = "/job:worker/task:{}/{}:0".format(self.task, device)
logger.debug(worker_device)
with tf.device(worker_device):
self.prepare_gan()
worker_device = "/job:worker/task:{}/cpu:0".format(self.task)
logger.debug(worker_device)
with tf.device(worker_device):
with tf.variable_scope("global"):
self.replay_dequeue = self.replay_queue. \
dequeue_many(self.args.disc_batch_size)
#####################################################
# Local policy network (task >= 2 (gan) or 1 (l2))
#####################################################
elif self.args.task >= 1:
worker_device = "/job:worker/task:{}/cpu:0".format(self.task)
logger.debug(worker_device)
with tf.device(worker_device):
self.prepare_local_network()
def prepare_master_network(self):
self.global_network = pi = models.Policy(
self.args, self.env, "global",
self.input_shape, self.action_sizes,
data_format='channels_first' \
if self.args.dynamic_channel \
else 'channels_last')
self.acs, acs = {}, {}
for idx, (name, action_size) in enumerate(
self.action_sizes.items()):
# [B, action_size]
self.acs[name] = tf.placeholder(
tf.int32, [None, None], name="{}_in".format(name))
acs[name] = tf.one_hot(self.acs[name], np.prod(action_size))
self.adv = adv = tf.placeholder(
tf.float32, [None, self.env.episode_length], name="adv")
self.r = r = tf.placeholder(
tf.float32, [None, self.env.episode_length], name="r")
bsz = tf.to_float(tf.shape(pi.x)[0])
########################
# Building optimizer
########################
self.loss = 0
self.pi_loss, self.vf_loss, self.entropy = 0, 0, 0
for name in self.action_sizes:
ac = acs[name]
logit = pi.logits[name]
log_prob_tf = tf.nn.log_softmax(logit)
prob_tf = tf.nn.softmax(logit)
pi_loss = - tf.reduce_sum(
tf.reduce_sum(log_prob_tf * ac, [-1]) * adv)
# loss of value function
vf_loss = 0.5 * tf.reduce_sum(tf.square(pi.vf - r))
entropy = - tf.reduce_sum(prob_tf * log_prob_tf)
self.loss += pi_loss + 0.5 * vf_loss - \
entropy * self.args.entropy_coeff
self.pi_loss += pi_loss
self.vf_loss += vf_loss
self.entropy += entropy
grads = tf.gradients(self.loss, pi.var_list)
##################
# Summaries
##################
# summarize only the last state
last_state = self.env.denorm(pi.x[:,-1])
last_state.set_shape(
[self.args.policy_batch_size] + ut.tf.int_shape(last_state)[1:])
summaries = [
tf.summary.image("last_state", image_reshaper(last_state)),
tf.summary.scalar("env/r", tf.reduce_mean(self.r[:,-1])),
tf.summary.scalar("model/policy_loss", self.pi_loss / bsz),
tf.summary.scalar("model/value_loss", self.vf_loss / bsz),
tf.summary.scalar("model/entropy", self.entropy / bsz),
tf.summary.scalar("model/grad_global_norm", tf.global_norm(grads)),
tf.summary.scalar("model/var_global_norm", tf.global_norm(pi.var_list)),
]
if pi.c is not None:
target = self.env.denorm(pi.c[:,-1])
target.set_shape(
[self.args.policy_batch_size] + ut.tf.int_shape(target)[1:])
summaries.append(
tf.summary.image("target", image_reshaper(target)))
self.l2_loss = tf.sqrt(1e-8 +
tf.reduce_sum(((pi.x[:,-1] - pi.c[:,-1])/255.)**2, [-3,-2,-1]))
summaries.append(
tf.summary.scalar("model/l2_loss", tf.reduce_mean(self.l2_loss)))
self.summary_op = tf.summary.merge(summaries)
grads, _ = tf.clip_by_global_norm(grads, self.args.grad_clip)
grads_and_vars = list(zip(grads, self.global_network.var_list))
# each worker has a different set of adam optimizer parameters
opt = tf.train.AdamOptimizer(
self.args.policy_lr, name="policy_optim")
self.train_op = opt.apply_gradients(grads_and_vars, self.policy_step)
self.summary_writer = None
def prepare_local_network(self):
self.local_network = models.Policy(
self.args, self.env, "local",
self.input_shape, self.action_sizes,
data_format='channels_last')
##########################
# Trajectory queue
##########################
self.trajectory_placeholders = {
name:tf.placeholder(
tf.float32, dict(self.queue_shapes)[name],
name="{}_in".format(name)) \
for name, shape in self.queue_shapes
}
self.trajectory_enqueues = self.trajectory_queue.enqueue(
{ name:self.trajectory_placeholders[name] \
for name, _ in self.queue_shapes })
##########################
# Replay queue
##########################
if self.args.loss == 'gan':
self.replay_placeholder = tf.placeholder(
tf.float32, self.input_shape,
name="replay_in")
self.replay_enqueue = self.replay_queue.enqueue(
self.replay_placeholder)
else:
self.replay_placeholder = None
self.replay_enqueue = None
###############################
# Thread dealing with queues
###############################
self.worker_thread = rl_utils.WorkerThread(
self.env,
self.local_network,
self.trajectory_enqueues,
self.trajectory_placeholders,
self.trajectory_queue_size_op,
self.replay_enqueue,
self.replay_placeholder,
self.replay_queue_size_op)
# copy weights from the parameter server to the local model
self.policy_sync = ut.tf.get_sync_op(
from_list=self.global_network.var_list,
to_list=self.local_network.var_list)
def prepare_gan(self):
self.replay = replay.ReplayBuffer(self.args, self.input_shape)
self.replay_dequeue = \
self.replay_queue.dequeue_many(self.args.disc_batch_size)
self.replay_thread = rl_utils.ReplayThread(
self.replay, self.replay_dequeue)
self.local_disc = models.Discriminator(
self.args, self.disc_step, self.input_shape,
self.env.norm, "local")
self.disc_sync = ut.tf.get_sync_op(
from_list=self.local_disc.var_list,
to_list=self.global_disc.var_list)
self.disc_initializer = ut.tf.get_sync_op(
from_list=self.global_disc.var_list,
to_list=self.local_disc.var_list)
def start_worker_thread(self, sess, summary_writer):
self.worker_thread.start_thread(sess, summary_writer)
self.summary_writer = summary_writer
def start_replay_thread(self, sess, summary_writer):
self.replay_thread.start_thread(sess)
self.summary_writer = summary_writer
def pull_batch_from_queue(self):
rollout = self.worker_thread.queue.get(timeout=600.0)
while not rollout.terminal:
try:
rollout.extend(self.worker_thread.queue.get_nowait())
except queue.Empty:
break
return rollout
###########################
# Master policy (task=0)
###########################
def train_policy(self, sess):
rollout = sess.run(self.trajectory_dequeue)
if self.args.loss == 'gan':
probs = self.global_disc.predict(rollout['states'][:,-1])
rollout['rewards'][:,-1] = probs
batch = rl_utils.multiple_process_rollout(
rollout, gamma=0.99, lambda_=1.0)
#################
# Feed ops
#################
feed_dict = {
# [B, ep_len]
self.r: batch.r,
self.adv: batch.adv,
self.global_network.x: batch.si,
# [B, ep_len, action_size]
self.global_network.ac: batch.a,
self.global_network.state_in[0]: batch.features[:,0],
self.global_network.state_in[1]: batch.features[:,1],
}
for name in self.action_sizes:
name_a = batch.a[:,:,self.env.ac_idx[name]]
feed_dict.update({
self.acs[name]: name_a,
})
if name in self.global_network.samples:
feed_dict.update({
self.global_network.samples[name]: name_a,
})
if self.args.conditional:
feed_dict.update({
self.global_network.c: batch.c,
})
else:
feed_dict.update({
self.global_network.z: batch.z,
})
#################
# Fetch ops
#################
fetches = {
'train': self.train_op,
'step': self.policy_step,
}
if self._policy_step % self.args.policy_log_step == 0:
fetches.update({
'summary': self.summary_op,
'policy_size': self.trajectory_queue_size_op,
})
out = sess.run(fetches, feed_dict=feed_dict)
if self._policy_step % self.args.policy_log_step == 0:
self.summary_writer.add_summary(
tf.Summary.FromString(out['summary']), out['step'])
self.summary_writer.flush()
debug_text = "# traj: {}".format(out['policy_size'])
if self.task == 0:
logger.info(debug_text)
else:
logger.debug(debug_text)
self._policy_step = out['step']
###########################
# Discriminator (task=1)
###########################
def train_gan(self, sess):
fakes = self.replay.sample(
self.args.disc_batch_size)
feed_dict = {
self.local_disc.fake: fakes,
self.local_disc.real: self.env.get_random_target(self.args.disc_batch_size),
}
fetches = {
'train': self.local_disc.train_op,
'step': self.local_disc.step,
}
if self._disc_step % self.args.disc_log_step == 0:
fetches.update({
'summary': self.local_disc.summary_op,
'replay_size': self.replay_queue_size_op,
})
out = sess.run(fetches, feed_dict=feed_dict)
if self._disc_step % self.args.disc_log_step == 0:
self.summary_writer.add_summary(
tf.Summary.FromString(out['summary']), out['step'])
self.summary_writer.flush()
logger.info("# replay: {}".format(out['replay_size']))
self._disc_step = out['step']
def weights_before_after(before, after, var_to_test):
print(" [*] Weight change check")
for idx, (bef, aft, var) in \
enumerate(zip(before, after, var_to_test)):
assert bef.shape == aft.shape, \
"Shape [{}] is not same: {}, {}".format(
var.name, bef.shape, aft.shape)
bef_sum, aft_sum = bef.sum(), aft.sum()
same_or_not = "SAME" if bef_sum == aft_sum else " "
print(" [{}] {}: {} ({}, {})". \
format(idx, var.name, same_or_not, bef_sum, aft_sum))