Skip to content

Latest commit

 

History

History
43 lines (30 loc) · 1.55 KB

README.md

File metadata and controls

43 lines (30 loc) · 1.55 KB

Neural Collective Entity Linking Based on Recurrent Random Walk Network Learning

Models and results can be found at our IJCAI 2019 paper [Neural Collective Entity Linking Based on Recurrent Random Walk Network Learning]. It achieves the state-of-the-art result on EL task.

Details will be updated soon.

Requirement:

Python: 3.6.3
PyTorch: 0.3.1 

Input format:

We transform the original data into pkl format, if you want the tranform code, please concat me.

pkl data location:

link:https://pan.baidu.com/s/17tHxyLAMqdOTozmnQsMQ6w

Fetch Code:kwvn

How to run the code?

Local:

python pre_net_xmg.py --cuda_device 0 --nohup regular --epoch 25 --weight_decay 1.28e-5 --LR 0.001 --batch 500 --filter_num 64 --filter_window 3  --local_model_loc model_loc/local/local_regular_new1 --embedding_finetune 1

Global:

python net_global_train.py --cuda_device 0 --nohup 0.5_0.1_3 --weight_decay 1.28e-5 --LR 0.0005 --local_model_loc model_loc/local/local_regular_new1.938.pkl --global_model_loc model_loc/global/global_model --random_k 3 --lamda 0.5 --flag 4:3:1 --gama 0.1 --batch 200 --epoch 25

Cite:

Please cite our IJCAI 2019 paper:

@article{xue2018,  
 title={Neural Collective Entity Linking Based on Recurrent Random Walk Network Learning },  
 author={Mengge Xue, Weiming Cai, Jinsong Su and Linfeng Song, Yubin Ge, Yubao Liu, Bin Wang},  
 booktitle={The Program Committee of the 28th International Joint Conference on Artificial Intelligence (IJCAI-19)},
 year={2019}  
}