-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathKalmanFilter.py
55 lines (45 loc) · 1.64 KB
/
KalmanFilter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
from Matrix import matrix
from time import time
class KalmanFilter:
def __init__(self):
# Location and Speed
self.x = matrix([[0.], [0.]])
# Initial uncertainty
self.P = matrix([[1000., 0.], [0., 1000.]])
# External Motion (Steering)
self.u = matrix([[0.], [0.]])
# State Transition Matrix
self.F = matrix([[1., 1.], [0, 1.]])
# Measurement Function. What are you measuring?
self.H = matrix([[1., 0.]])
# Measurement Uncertainty
self.R = matrix([[.01]])
# Increase Gain
self.G = matrix([[2.]])
# Identity Matrix
self.I = matrix([[1., 0], [0, 1.]])
self.t = time()
def update(self, measurement):
# Update State Transition Matrix
curTime = time()
dt = curTime - self.t
self.F = matrix([[1., dt], [0, 1.]])
z = matrix([[measurement]])
y = z - self.H * self.x
S = self.H * self.P * self.H.transpose() + self.R
K = self.P * self.H.transpose() * S.inverse()
self.x = self.x + (K * y)# * self.G
self.P = (self.I - K * self.H) * self.P
def predict(self):
# Update State Transition Matrix
curTime = time()
dt = curTime - self.t
self.t = curTime
self.F = matrix([[1., dt], [0, 1.]])
self.x = self.F * self.x + self.u
self.P = self.F * self.P * self.F.transpose()
self.P = self.P * matrix([[1.3, 0], [0, 1.3]])
return self.x.getValue()[0][0]
def reset(self):
self.P = matrix([[1000., 0.], [0., 1000.]])
self.x = matrix([[0.], [0.]])