forked from rytheranderson/cif2lammps
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcif2system.py
executable file
·701 lines (536 loc) · 26 KB
/
cif2system.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
from __future__ import print_function
import re
import math
import numpy as np
import networkx as nx
import itertools
import datetime
import atomic_data
import functools
from random import choice
import warnings
from numpy.linalg import norm, inv
metals = atomic_data.metals
mass_key = atomic_data.mass_key
PT = ['H' , 'He', 'Li', 'Be', 'B' , 'C' , 'N' , 'O' , 'F' , 'Ne', 'Na', 'Mg', 'Al', 'Si', 'P' , 'S' , 'Cl', 'Ar',
'K' , 'Ca', 'Sc', 'Ti', 'V' , 'Cr', 'Mn', 'Fe', 'Co', 'Ni', 'Cu', 'Zn', 'Ga', 'Ge', 'As', 'Se', 'Br', 'Kr',
'Rb', 'Sr', 'Y' , 'Zr', 'Nb', 'Mo', 'Tc', 'Ru', 'Rh', 'Pd', 'Ag', 'Cd', 'In', 'Sn', 'Sb', 'Te', 'I' , 'Xe',
'Cs', 'Ba', 'Hf', 'Ta', 'W' , 'Re', 'Os', 'Ir', 'Pt', 'Au', 'Hg', 'Tl', 'Pb', 'Bi', 'Po', 'At', 'Rn', 'Fr',
'Ra', 'La', 'Ce', 'Pr', 'Nd', 'Pm', 'Sm', 'Eu', 'Gd', 'Tb', 'Dy', 'Ho', 'Er', 'Tm', 'Yb', 'Lu', 'Ac', 'Th',
'Pa', 'U' , 'Np', 'Pu', 'Am', 'Cm', 'Bk', 'Cf', 'Es', 'Fm', 'Md', 'No', 'Lr', 'FG', 'X' ]
def GCD(a,b):
a = abs(a)
b = abs(b)
while a:
a, b = b%a, a
return b
def GCD_List(list):
return functools.reduce(GCD, list)
def nn(string):
return re.sub('[^a-zA-Z]', '', string)
def nl(string):
return re.sub('[^0-9]', '', string)
def isfloat(value):
"""
determines if a value is a float
"""
try:
float(value)
return True
except ValueError:
return False
def iscoord(line):
"""
identifies coordinates in CIFs
"""
if nn(line[0]) in PT and line[1] in PT and False not in map(isfloat,line[2:5]):
return True
else:
return False
def isbond(line):
"""
identifies bonding in cifs
"""
if nn(line[0]) in PT and nn(line[1]) in PT and isfloat(line[2]) and line[-1] in ('S', 'D', 'T', 'A'):
return True
else:
return False
def PBC3DF_sym(vec1, vec2):
"""
applies periodic boundary to distance between vec1 and vec2 (fractional coordinates)
"""
dist = vec1 - vec2
sym_dist = [(-1.0, dim - 1.0) if dim > 0.5 else (1.0, dim + 1.0) if dim < -0.5 else (0, dim) for dim in dist]
sym = np.array([s[0] for s in sym_dist])
ndist = np.array([s[1] for s in sym_dist])
return ndist, sym
def cif_read(filename, charges=False, add_Zr_bonds=False):
with open(filename, 'r') as f:
f = f.read()
f = filter(None, f.split('\n'))
names = []
elems = []
fcoords = []
charge_list = []
bonds = []
for line in f:
s = line.split()
if '_cell_length_a' in line:
a = s[1]
if '_cell_length_b' in line:
b = s[1]
if '_cell_length_c' in line:
c = s[1]
if '_cell_angle_alpha' in line:
alpha = s[1]
if '_cell_angle_beta' in line:
beta = s[1]
if '_cell_angle_gamma' in line:
gamma = s[1]
if iscoord(s):
names.append(s[0])
elems.append(s[1])
fvec = np.array([np.round(float(v),8) for v in s[2:5]])
for dim in range(len(fvec)):
if fvec[dim] < 0.0:
fvec[dim] += 1.0
elif fvec[dim] > 1.0:
fvec[dim] -= 1.0
fcoords.append(fvec)
charge_list.append(float(s[-1]))
if isbond(s):
bonds.append((s[0],s[1],s[3],s[4],s[2]))
pi = np.pi
a,b,c,alpha,beta,gamma = map(float,(a,b,c,alpha,beta,gamma))
ax = a
ay = 0.0
az = 0.0
bx = b * np.cos(gamma * pi / 180.0)
by = b * np.sin(gamma * pi / 180.0)
bz = 0.0
cx = c * np.cos(beta * pi / 180.0)
cy = (c * b * np.cos(alpha * pi /180.0) - bx * cx) / by
cz = (c ** 2.0 - cx ** 2.0 - cy ** 2.0) ** 0.5
unit_cell = np.asarray([[ax,ay,az],[bx,by,bz],[cx,cy,cz]]).T
ccoords = []
for l in fcoords:
vec = l
vec = np.dot(unit_cell,vec)
ccoords.append(vec)
fcoords = np.asarray(fcoords)
ccoords = np.asarray(ccoords)
charge_list = np.asarray(charge_list)
net_charge = np.round(np.sum(charge_list),3)
if net_charge > 0.1 and charges:
warnings.warn('A potentially significant net charge of ' + str(net_charge) + ' is being removed')
remove_net = choice(range(len(charge_list)))
charge_list[remove_net] -= net_charge
if add_Zr_bonds:
count = 0
for i in range(len(elems)):
for j in range(i + 1, len(elems)):
elemi = elems[i]
elemj = elems[j]
if elemi == 'Zr' and elemj == 'Zr':
ivec = fcoords[i]
jvec = fcoords[j]
dist = PBC3DF_sym(ivec, jvec)[0]
dist = norm(np.dot(unit_cell, dist))
if dist < 4.5:
count += 1
bonds.append([names[i], names[j], '.', 'S', np.round(dist,3)])
print(count, 'Zr-Zr bonds added...')
return elems, names, ccoords, fcoords, charge_list, bonds, (a,b,c,alpha,beta,gamma), unit_cell
def initialize_system(filename, charges=False, small_molecule_cutoff=5, read_pymatgen=False):
if not read_pymatgen:
elems, names, ccoords, fcoords, charge_list, bonds, uc_params, unit_cell = cif_read(filename, charges=charges)
else:
from pymatgen_cif2system import cif_read_pymatgen
elems, names, ccoords, fcoords, charge_list, bonds, uc_params, unit_cell = cif_read_pymatgen(filename, charges=charges)
A,B,C,alpha,beta,gamma = uc_params
G = nx.Graph()
index = 0
index_key = {}
for e, n, cc, fc, charge in zip(elems, names, ccoords, fcoords, charge_list):
index += 1
G.add_node(index, element_symbol=e, mol_flag='1', index=index, force_field_type='', cartesian_position=cc, fractional_position=fc, charge=charge, replication=np.array([0.0,0.0,0.0]), duplicated_version_of=None)
index_key[n] = index
for b in bonds:
dist,sym = PBC3DF_sym(G.nodes[index_key[b[0]]]['fractional_position'], G.nodes[index_key[b[1]]]['fractional_position'])
if np.any(sym):
sym_code = '1_' + ''.join(map(str, map(int, sym + 5)))
else:
sym_code = '.'
dist = np.linalg.norm(np.dot(unit_cell, dist))
G.add_edge(index_key[b[0]], index_key[b[1]], sym_code=sym_code, bond_type=b[3], length=float(b[-1]))
print_flag = False
for e in G.edges(data=True):
e0,e1,data = e
nbors0 = list(G.neighbors(e0))
nbors1 = list(G.neighbors(e1))
nbors0_symbols = [G.nodes[nb]['element_symbol'] for nb in nbors0]
nbors1_symbols = [G.nodes[nb]['element_symbol'] for nb in nbors1]
es0 = G.nodes[e0]['element_symbol']
es1 = G.nodes[e1]['element_symbol']
bond_type = data['bond_type']
# carboxylate oxygens should have aromatic bonds with C
if len(nbors0_symbols) == 2 and es0 == 'O' and es1 == 'C' and any(i in metals for i in nbors0_symbols) and bond_type != 'A':
print_flag = True
data['bond_type'] = 'A'
if len(nbors1_symbols) == 2 and es1 == 'O' and es0 == 'C' and any(i in metals for i in nbors1_symbols) and bond_type != 'A':
print_flag = True
data['bond_type'] = 'A'
# nitro nitrogens should have aromatic bonds with O
if es0 == 'N' and es1 == 'O' and sorted(nbors0_symbols) == ['C', 'O', 'O']:
print_flag = True
data['bond_type'] = 'A'
if es1 == 'N' and es0 == 'O' and sorted(nbors1_symbols) == ['C', 'O', 'O']:
print_flag = True
data['bond_type'] = 'A'
if print_flag:
print('correcting bond type to aromatic for', filename)
components = []
SGS = [G.subgraph(c).copy() for c in nx.connected_components(G)]
for S in SGS:
elems = [data['element_symbol'] for node,data in S.nodes(data=True)]
comp_dict = dict((k,0) for k in set(elems))
for es in elems:
comp_dict[es] += 1
counts = GCD_List([comp_dict[e] for e in comp_dict])
for es in comp_dict:
comp_dict[es] = int(comp_dict[es]/float(counts))
comp = tuple(sorted([(key,val) for key,val in comp_dict.items()], key=lambda x:x[0]))
formula = ''.join([str(x) for es in comp for x in es])
components.append((len(elems), formula, S))
print('there are', len(components), 'components in the system with (#atoms, formula unit):')
SM = nx.Graph()
framework = nx.Graph()
for component in components:
print('{:<6} {}'.format(component[0], component[1]))
S = component[2]
if len(S.nodes()) > small_molecule_cutoff:
framework = nx.compose(framework, S)
if len(S.nodes()) < small_molecule_cutoff:
node_elems = [(n,data['element_symbol']) for n,data in S.nodes(data=True)]
sort_elems = sorted(node_elems, key=lambda x: x[1], reverse=True)
sort_index = sorted(node_elems, key=lambda x: x[0], reverse=False)
sort_key = dict((i[0],j[0]) for i,j in zip(sort_index, sort_elems))
add_graph = nx.Graph()
for node,elem in sort_elems:
data = G.nodes[node]
add_graph.add_node(sort_key[node], **data)
for e0,e1,data in S.edges(data=True):
add_graph.add_edge(sort_key[e0], sort_key[e1], **data)
SM = nx.compose(SM, add_graph)
index = 0
frame_remap = {}
for name,data in framework.nodes(data=True):
index += 1
frame_remap[name] = index
data['index'] = index
framework = nx.relabel_nodes(framework, frame_remap)
sm_remap = {}
for name,data in SM.nodes(data=True):
index += 1
sm_remap[name] = index
data['index'] = index
SM = nx.relabel_nodes(SM, sm_remap)
return {'box':(A,B,C,alpha,beta,gamma), 'graph':framework, 'SM_graph':SM, 'max_ind':index}
def duplicate_system(system, replications, small_molecule_cutoff=10):
if replications == '1x1x1':
return system
G = system['graph']
SMG = system['SM_graph']
G = nx.compose(G, SMG)
box = system['box']
replications = list(map(int, replications.split('x')))
replicated_box = (box[0]*replications[0], box[1]*replications[1], box[2]*replications[2], box[3], box[4], box[5])
pi = np.pi
a,b,c,alpha,beta,gamma = replicated_box
ax = a
ay = 0.0
az = 0.0
bx = b * np.cos(gamma * pi / 180.0)
by = b * np.sin(gamma * pi / 180.0)
bz = 0.0
cx = c * np.cos(beta * pi / 180.0)
cy = (c * b * np.cos(alpha * pi /180.0) - bx * cx) / by
cz = (c ** 2.0 - cx ** 2.0 - cy ** 2.0) ** 0.5
unit_cell = np.asarray([[ax,ay,az],[bx,by,bz],[cx,cy,cz]]).T
basis_vecs = [np.array([1,0,0]), np.array([0,1,0]), np.array([0,0,1])]
dim0 = [[np.array([0,0,0])]] + [[np.array([0,0,0])] + [basis_vecs[0] for i in range(r + 1)] for r in range(replications[0] - 1)]
dim1 = [[np.array([0,0,0])]] + [[np.array([0,0,0])] + [basis_vecs[1] for i in range(r + 1)] for r in range(replications[1] - 1)]
dim2 = [[np.array([0,0,0])]] + [[np.array([0,0,0])] + [basis_vecs[2] for i in range(r + 1)] for r in range(replications[2] - 1)]
dim0 = [np.sum([v for v in comb], axis=0) for comb in dim0]
dim1 = [np.sum([v for v in comb], axis=0) for comb in dim1]
dim2 = [np.sum([v for v in comb], axis=0) for comb in dim2]
trans_vecs = [np.sum(comb, axis=0) for comb in itertools.product(dim0, dim1, dim2)]
trans_vecs = [v for v in trans_vecs if np.any(v)]
print('The transformation vectors for the replication are:')
for vec in trans_vecs:
print(vec)
print('...')
if len(trans_vecs) != replications[0] * replications[1] * replications[2] - 1:
raise ValueError('The number of transformation vectors in the replication is wrong somehow')
NG = G.copy()
edge_remove_list = []
max_ind = max([d['index'] for n,d in G.nodes(data=True)])
count = max_ind
equivalency = dict((n,[]) for n in G.nodes())
for trans_vec in trans_vecs:
for node, node_data in G.nodes(data=True):
count += 1
# this data stays the same
element_symbol = node_data['element_symbol']
charge = node_data['charge']
# update index
original_atom = node_data['index']
new_index = count
# update coordinates
fvec = node_data['fractional_position']
translated_fvec = fvec + trans_vec
fvec = np.array([c/d for c,d in zip(fvec, replications)])
translated_fvec = np.array([c/d for c,d in zip(translated_fvec, replications)])
NG.nodes[node]['fractional_position'] = fvec
equivalency[original_atom].append(new_index)
NG.add_node(new_index, element_symbol=element_symbol, mol_flag=1, index=new_index, force_field_type='', cartesian_position=np.array([0.0,0.0,0.0]), fractional_position=translated_fvec, charge=charge, duplicated_version_of=original_atom)
for node,data in NG.nodes(data=True):
data['cartesian_position'] = np.dot(unit_cell, data['fractional_position'])
for n0, n1, edge_data in G.edges(data=True):
sym_code = edge_data['sym_code']
bond_type = edge_data['bond_type']
length = edge_data['length']
fvec_n0 = NG.nodes[n0]['fractional_position']
fvec_n1 = NG.nodes[n1]['fractional_position']
for eq0 in equivalency[n0]:
for eq1 in equivalency[n1]:
fvec_eq0 = NG.nodes[eq0]['fractional_position']
fvec_eq1 = NG.nodes[eq1]['fractional_position']
dist_e0e1,sym_e0e1 = PBC3DF_sym(fvec_eq0, fvec_eq1)
dist_e0e1 = np.linalg.norm(np.dot(unit_cell, dist_e0e1))
dist_n0e1,sym_n0e1 = PBC3DF_sym(fvec_n0, fvec_eq1)
dist_n0e1 = np.linalg.norm(np.dot(unit_cell, dist_n0e1))
dist_e0n1,sym_e0n1 = PBC3DF_sym(fvec_eq0, fvec_n1)
dist_e0n1 = np.linalg.norm(np.dot(unit_cell, dist_e0n1))
dist_n0n1,sym_n0n1 = PBC3DF_sym(fvec_n0, fvec_n1)
dist_n0n1 = np.linalg.norm(np.dot(unit_cell, dist_n0n1))
if abs(dist_e0e1 - length) < 0.075:
if np.any(sym_e0e1):
sym_code = '1_' + ''.join(map(str, map(int, sym_e0e1 + 5)))
else:
sym_code = '.'
NG.add_edge(eq0, eq1, sym_code=sym_code, bond_type=bond_type, length=dist_e0e1)
if abs(dist_n0e1 - length) < 0.075:
if np.any(sym_n0e1):
sym_code = '1_' + ''.join(map(str, map(int, sym_n0e1 + 5)))
else:
sym_code = '.'
NG.add_edge(n0, eq1, sym_code=sym_code, bond_type=bond_type, length=dist_n0e1)
if abs(dist_e0n1 - length) < 0.075:
if np.any(sym_e0n1):
sym_code = '1_' + ''.join(map(str, map(int, sym_e0n1 + 5)))
else:
sym_code = '.'
NG.add_edge(eq0, n1, sym_code=sym_code, bond_type=bond_type, length=dist_n0e1)
if abs(dist_n0n1 - length) > 0.075:
if (n0,n1) not in edge_remove_list:
edge_remove_list.append((n0, n1))
for e in edge_remove_list:
NG.remove_edge(e[0], e[1])
components = []
SGS = [NG.subgraph(c).copy() for c in nx.connected_components(NG)]
for S in SGS:
elems = [data['element_symbol'] for node,data in S.nodes(data=True)]
comp_dict = dict((k,0) for k in set(elems))
for es in elems:
comp_dict[es] += 1
counts = GCD_List([comp_dict[e] for e in comp_dict])
for es in comp_dict:
comp_dict[es] = int(comp_dict[es]/float(counts))
comp = tuple(sorted([(key,val) for key,val in comp_dict.items()], key=lambda x:x[0]))
formula = ''.join([str(x) for es in comp for x in es])
components.append((len(elems), formula, S))
print('there are', len(components), 'components in the system with (#atoms, formula unit):')
SM = nx.Graph()
framework = nx.Graph()
for component in components:
print('{:<6} {}'.format(component[0], component[1]))
S = component[2]
if len(S.nodes()) > small_molecule_cutoff:
framework = nx.compose(framework, S)
if len(S.nodes()) < small_molecule_cutoff:
SM = nx.compose(SM, S)
index = 0
frame_remap = {}
for name,data in framework.nodes(data=True):
index += 1
frame_remap[name] = index
data['index'] = index
framework = nx.relabel_nodes(framework, frame_remap)
sm_remap = {}
for name,data in SM.nodes(data=True):
index += 1
sm_remap[name] = index
data['index'] = index
SM = nx.relabel_nodes(SM, sm_remap)
MI = max([data['index'] for n,data in NG.nodes(data=True)])
return {'box':replicated_box, 'graph':framework, 'SM_graph':SM, 'max_ind':MI}
def replication_determination(system, replication, cutoff):
box = system['box']
pi = np.pi
a,b,c,alpha,beta,gamma = box
ax = a
ay = 0.0
az = 0.0
bx = b * np.cos(gamma * pi / 180.0)
by = b * np.sin(gamma * pi / 180.0)
bz = 0.0
cx = c * np.cos(beta * pi / 180.0)
cy = (c * b * np.cos(alpha * pi /180.0) - bx * cx) / by
cz = (c ** 2.0 - cx ** 2.0 - cy ** 2.0) ** 0.5
avec = np.array([ax, ay, az])
bvec = np.array([bx, by, bz])
cvec = np.array([cx, cy, cz])
thetac = np.arccos(np.dot(np.cross(avec, bvec), cvec) / (np.linalg.norm(np.cross(avec, bvec)) * np.linalg.norm(cvec)))
dist2 = np.absolute(np.linalg.norm(cvec) * np.cos(thetac))
thetab = np.arccos(np.dot(np.cross(avec, cvec), bvec) / (np.linalg.norm(np.cross(avec, cvec)) * np.linalg.norm(bvec)))
dist1 = np.absolute(np.linalg.norm(bvec) * np.cos(thetab))
thetaa = np.arccos(np.dot(np.cross(cvec, bvec), avec) / (np.linalg.norm(np.cross(cvec, bvec)) * np.linalg.norm(avec)))
dist0 = np.absolute(np.linalg.norm(avec) * np.cos(thetaa))
if 'min_atoms' in replication:
min_atoms = int(replication.split(':')[-1])
G = system['graph']
Natoms = float(len(G.nodes()))
dmin = int(math.ceil(min_atoms/Natoms))
dsep0 = int(math.ceil((2*cutoff)/dist0))
dsep1 = int(math.ceil((2*cutoff)/dist1))
dsep2 = int(math.ceil((2*cutoff)/dist2))
dsep = dsep0 * dsep1 * dsep2
duplications = max(dsep, dmin)
useable_shapes = []
print('minimum duplications allowed:', duplications)
while len(useable_shapes) < 1:
rvals = range(duplications + 1)[1:]
shapes = itertools.product(rvals, rvals, rvals)
shapes = [s for s in shapes if functools.reduce((lambda x, y: x * y), s) == duplications]
useable_shapes = [s for s in shapes if min(dist0*s[0], dist1*s[1], dist2*s[2]) >= 2*cutoff]
useable_shapes = [s for s in useable_shapes if max([((a*s[0])/(b*s[1])), ((a*s[0])/(c*s[2])), ((b*s[1])/(c*s[2])), ((b*s[1])/(a*s[0])), ((c*s[2])/(a*s[0])), ((c*s[2])/(b*s[1]))]) <= 2.0]
duplications += 1
duplications -= 1
print('final duplications:', duplications)
print('final number of atoms:', int(duplications*Natoms))
shape_deviations = [(i, np.std([useable_shapes[i][0]*a, useable_shapes[i][1]*b, useable_shapes[i][2]*c])) for i in range(len(useable_shapes))]
shape_deviations.sort(key = lambda x:x[1])
selected_shape = useable_shapes[shape_deviations[0][0]]
replication = 'x'.join(map(str, selected_shape))
print('replicating to a', replication, 'cell (' + str(duplications) + ' duplications)...')
system = duplicate_system(system, replication)
print('the minimum boundary-boundary distance is', min([d*s for d,s in zip(selected_shape, (dist0,dist1,dist2))]))
replication='ma' + str(min_atoms)
a,b,c,alpha,beta,gamma = system['box']
lx = np.round(a, 8)
xy = np.round(b * np.cos(math.radians(gamma)), 8)
xz = np.round(c * np.cos(math.radians(beta)), 8)
ly = np.round(np.sqrt(b**2 - xy**2), 8)
yz = np.round((b * c*np.cos(math.radians(alpha)) - xy*xz)/ly, 8)
lz = np.round(np.sqrt(c**2 - xz**2 - yz**2), 8)
print('lx =', np.round(lx, 3), '(dim 0 separation = ' + str(np.round(selected_shape[0] * dist0, 3)) + ')')
print('ly =', np.round(ly, 3), '(dim 1 separation = ' + str(np.round(selected_shape[1] * dist1, 3)) + ')')
print('lz =', np.round(lz, 3), '(dim 2 separation = ' + str(np.round(selected_shape[2] * dist2, 3)) + ')')
print('alpha =', np.round(alpha, 3))
print('beta =', np.round(beta, 3))
print('gamma =', np.round(gamma, 3))
elif 'cutoff' in replication:
dsep0 = int(math.ceil((2*cutoff)/dist0))
dsep1 = int(math.ceil((2*cutoff)/dist1))
dsep2 = int(math.ceil((2*cutoff)/dist2))
dsep = dsep0 * dsep1 * dsep2
duplications = dsep
useable_shapes = []
print('minimum duplications allowed:', duplications)
while len(useable_shapes) < 1:
rvals = range(duplications + 1)[1:]
shapes = itertools.product(rvals, rvals, rvals)
shapes = [s for s in shapes if functools.reduce((lambda x, y: x * y), s) == duplications]
useable_shapes = [s for s in shapes if min(dist0*s[0], dist1*s[1], dist2*s[2]) >= 2*cutoff]
duplications += 1
duplications -= 1
print('final duplications:', duplications)
shape_deviations = [(i, np.std([useable_shapes[i][0]*a, useable_shapes[i][1]*b, useable_shapes[i][2]*c])) for i in range(len(useable_shapes))]
shape_deviations.sort(key = lambda x:x[1])
selected_shape = useable_shapes[shape_deviations[0][0]]
replication = 'x'.join(map(str, selected_shape))
print('replicating to a', replication, 'cell (' + str(duplications) + ' duplications)...')
system = duplicate_system(system, replication)
print('the minimum boundary-boundary distance is', min([d*s for d,s in zip(selected_shape, (dist0,dist1,dist2))]))
a,b,c,alpha,beta,gamma = system['box']
lx = np.round(a, 8)
xy = np.round(b * np.cos(math.radians(gamma)), 8)
xz = np.round(c * np.cos(math.radians(beta)), 8)
ly = np.round(np.sqrt(b**2 - xy**2), 8)
yz = np.round((b * c*np.cos(math.radians(alpha)) - xy*xz)/ly, 8)
lz = np.round(np.sqrt(c**2 - xz**2 - yz**2), 8)
print('lx =', np.round(lx, 3), '(dim 0 separation = ' + str(np.round(selected_shape[0] * dist0, 3)) + ')')
print('ly =', np.round(ly, 3), '(dim 1 separation = ' + str(np.round(selected_shape[1] * dist1, 3)) + ')')
print('lz =', np.round(lz, 3), '(dim 2 separation = ' + str(np.round(selected_shape[2] * dist2, 3)) + ')')
print('alpha =', np.round(alpha, 3))
print('beta =', np.round(beta, 3))
print('gamma =', np.round(gamma, 3))
elif 'x' in replication and replication != '1x1x1':
system = duplicate_system(system, replication)
elif replication == '1x1x1':
pass
elif replication == '':
pass
else:
raise ValueError('The replication command is not recognized')
return system, replication
def write_cif_from_system(system, filename):
box = system['box']
G = system['graph']
a,b,c,alpha,beta,gamma = box
with open(filename, 'w') as out:
out.write('data_' + filename[0:-4] + '\n')
out.write('_audit_creation_date ' + datetime.datetime.today().strftime('%Y-%m-%d') + '\n')
out.write("_audit_creation_method 'cif2lammps'" + '\n')
out.write("_symmetry_space_group_name_H-M 'P1'" + '\n')
out.write('_symmetry_Int_Tables_number 1' + '\n')
out.write('_symmetry_cell_setting triclinic' + '\n')
out.write('loop_' + '\n')
out.write('_symmetry_equiv_pos_as_xyz' + '\n')
out.write(' x,y,z' + '\n')
out.write('_cell_length_a ' + str(a) + '\n')
out.write('_cell_length_b ' + str(b) + '\n')
out.write('_cell_length_c ' + str(c) + '\n')
out.write('_cell_angle_alpha ' + str(alpha) + '\n')
out.write('_cell_angle_beta ' + str(beta) + '\n')
out.write('_cell_angle_gamma ' + str(gamma) + '\n')
out.write('loop_' + '\n')
out.write('_atom_site_label' + '\n')
out.write('_atom_site_type_symbol' + '\n')
out.write('_atom_site_fract_x' + '\n')
out.write('_atom_site_fract_y' + '\n')
out.write('_atom_site_fract_z' + '\n')
out.write('_atom_site_charge' + '\n')
index_dict = {}
for n,data in G.nodes(data=True):
vec = data['fractional_position']
es = data['element_symbol']
ind = es + str(data['index'])
index_dict[n] = ind
chg = data['charge']
out.write('{:7} {:>4} {:>15.6f} {:>15.6f} {:>15.6f} {:>15.6f}'.format(ind, es, vec[0], vec[1], vec[2], chg))
out.write('\n')
out.write('loop_' + '\n')
out.write('_geom_bond_atom_site_label_1' + '\n')
out.write('_geom_bond_atom_site_label_2' + '\n')
out.write('_geom_bond_distance' + '\n')
#out.write('_geom_bond_site_symmetry_1' + '\n')
out.write('_ccdc_geom_bond_type' + '\n')
for n0, n1, data in G.edges(data=True):
ind0 = index_dict[n0]
ind1 = index_dict[n1]
dist = np.round(data['length'], 3)
bond_type = data['bond_type']
out.write('{:7} {:>7} {:>7} {:>3}'.format(ind0, ind1, dist, bond_type))
out.write('\n')