-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbootEGA.R
94 lines (89 loc) · 4.15 KB
/
bootEGA.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
#' Investigates the stability of EGA's estimation via bootstrap.
#'
#' \code{bootEGA} Estimates the number of dimensions of n bootstraps from the empirical correlation matrix,
#' and returns a typical network (i.e. the network formed by the median pairwise partial correlations over the n bootstraps) and its dimensionality.
#'
#' @param data A dataframe with the variables to be used in the analysis
#' @param n An integer value representing the number of bootstraps
#'
#' @param medianStructure Logical. If true, returns the typical network of partial correlations (estimated via graphical lasso), which is the median of all pairwise correlations over the n bootstraps, and estimates its dimensions.
#' @param plot.MedianStructure Logical. If true, returns a plot of the typical network (partial correlations), which is the median of all pairwise correlations over the n bootstraps, and its estimated dimensions.
#' @param ncores Number of cores to use in computing results. Set to 1 to not use parallel computing.
#' @author Hudson F. Golino <hfgolino at gmail.com>
#' @examples
#' boot.wmt <- bootEGA(data = wmt2[,7:24], n = 500, medianStructure = TRUE, plot.MedianStructure = TRUE)
#' boot.intwl <- bootEGA(data = intelligenceBattery[,8:66], n = 500, medianStructure = TRUE, plot.MedianStructure = TRUE, ncores = 4)
#'
#' \dontrun{
#' bootEGA(a)
#' }
#' @seealso \code{\link{EGA}} to estimate the number of dimensions of an instrument using EGA and \code{\link{CFA}} to
#' verify the fit of the structure suggested by EGA using confirmatory factor analysis.
#' @export
# Bootstrap EGA:
bootEGA <- function(data, n, medianStructure = TRUE, plot.MedianStructure = TRUE, ncores) {
if(!require(qgraph)) {
message("installing the 'qgraph' package")
install.packages("qgraph")
}
if(!require(bootnet)) {
message("installing the 'bootnet' package")
install.packages("bootnet")
}
if(!require(igraph)) {
message("installing the 'igraph' package")
install.packages("igraph")
}
boot.ega <- bootnet(data, nBoot = n, default = "EBICglasso",
computeCentrality = FALSE, type = "parametric", nCores = ncores)
bootGraphs <- vector("list", n)
for (i in 1:n) {
bootGraphs[[i]] <- boot.ega$boots[[i]]$graph
colnames(bootGraphs[[i]]) <- colnames(data)
rownames(bootGraphs[[i]]) <- colnames(data)
}
boot.igraph <- vector("list", n)
for (l in 1:n) {
boot.igraph[[l]] <- as.igraph(qgraph(bootGraphs[[l]], DoNotPlot = TRUE))
}
boot.wc <- vector("list", n)
for (m in 1:n) {
boot.wc[[m]] <- walktrap.community(boot.igraph[[m]])
}
boot.ndim <- matrix(NA, nrow = n, ncol = 2)
for (m in 1:n) {
boot.ndim[m, 2] <- max(boot.wc[[m]]$membership)
}
colnames(boot.ndim) <- c("Boot.Number", "N.Dim")
boot.ndim[, 1] <- seq_len(n)
if (medianStructure == TRUE) {
median.Structure <- apply(simplify2array(bootGraphs),
1:2, median)
median.igraph <- as.igraph(qgraph(median.Structure, DoNotPlot = TRUE))
median.wc <- walktrap.community(median.igraph)
median.ndim <- max(median.wc$membership)
dim.variables <- data.frame(items = names(data), dimension = median.wc$membership)
}
if (plot.MedianStructure == TRUE) {
plot.median.ega <- qgraph(median.Structure, layout = "spring",
vsize = 5, groups = as.factor(median.wc$membership))
}
Median <- median(boot.ndim[, 2])
sd.boot <- sd(boot.ndim[, 2])
se.boot <- (1.253 * sd.boot)/sqrt(nrow(boot.ndim))
ciMult <- qt(0.95/2 + 0.5, nrow(boot.ndim) - 1)
ci <- se.boot * ciMult
summary.table <- data.frame(n.Boots = n, median.dim = Median,
SD.dim = sd.boot, SE.dim = se.boot, CI.dim = ci, Lower = Median -
ci, Upper = Median + ci)
result <- list()
result$n <- n
result$boot.ndim <- boot.ndim
result$bootGraphs <- bootGraphs
result$summary.table <- summary.table
medianGraph <- list()
medianGraph$graph <- median.Structure
medianGraph$median.dim.variables <- dim.variables[order(dim.variables[,2]), ]
result$medianGraph <- medianGraph
return(result)
}