-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLiftCSR.lagda
345 lines (318 loc) · 10.8 KB
/
LiftCSR.lagda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
%if False
\begin{code}
open import ClosedSemiRingRecord
module LiftCSR (csr : ClosedSemiRing) where
open import Data.Product renaming (_,_ to _,,_)
open import Product
import Relation.Binary.EqReasoning as EqReasoning
open import Relation.Binary.PropositionalEquality using (refl)
open import Shape
open import Matrix
open import SemiRingRecord
open import SemiNearRingRecord
import LiftSR renaming (Square to SquareSR; <*S> to <*>; <+S> to <+>; oneS to I)
open ClosedSemiRing csr
open SemiRing sr
open SemiNearRing snr
open LiftSR sr
infixr 60 _*_
_*_ = _*S_
infixr 50 _+_
_+_ = _+S_
\end{code}
%endif
\citet{lehmann1977} presents a definition of the closure on
square matrices, \(A^* = 1 + A \cdot A^*\):
%
Given a square matrix
%
\[
A = \Quad[1ex]
{A_{11}}{A_{12}}
{A_{21}}{A_{22}}
\]
%
the transitive closure of $A$ is defined inductively as
%
\begin{align*}
A^*
& =
\Quad[1ex]{A_{11}^* + A_{11}^* \cdot A_{12} \cdot \Delta^* \cdot A_{21} \cdot A_{11}^*}
{A_{11}^* \cdot A_{12} \cdot \Delta^*}
{\Delta^* \cdot A_{21} \cdot A_{11}^*}
{\Delta^*}
\end{align*}
%
where $\Delta = A_{22} + A_{21} \cdot A_{11}^* \cdot A_{12}$ and the
base case is the 1-by-1 matrix where we use the transitive closure of
the element of the matrix:
%
\(
\boxed{a}\,^* = \boxed{a^*}
\).
We have encoded this definition of closure in Agda and implemented a
constructive correctness proof using structural induction and
equational reasoning.
%
The full development of around 2500 lines of literate Agda code
(including this abstract) is available on GitHub
(\url{https://github.com/DSLsofMath/FLABloM}).
%if False
\begin{code}
EqS : ∀ {sh} → M s sh sh → M s sh sh → Set
EqS w c = I + w * c ≃S c
-- from Lehmann
lemma2-1-1 : ∀ sh sh1 (A : M s sh sh) (R : M s sh sh1) →
(I + A) * R ≃S R + A * R
lemma2-1-1 sh sh1 A R =
let open EqReasoning setoidS
in begin
(I + A) * R
≈⟨ distrS R I A ⟩
I * R + A * R
≈⟨ <+> sh sh1 (*-identlS R) (reflS sh sh1) ⟩
R + A * R
∎
private
module lemma1
(sh sh1 : Shape)
(C C* : M s sh sh)
(D : M s sh sh1)
(E : M s sh1 sh)
(Δ* : M s sh1 sh1)
(ih : C* ≃S I + C * C*) where
X = D * Δ* * E * C*
entire-lem1 : C* * X ≃S C * C* * X + X
entire-lem1 =
let open EqReasoning setoidS
in begin
C* * X
≈⟨ <*> sh sh sh ih (reflS sh sh) ⟩
(I + C * C*) * X
≈⟨ distrS (X) I (C * C*) ⟩
I * X + (C * C*) * X
≈⟨ <+> sh sh
(*-identlS X)
(*-assocS sh sh sh sh C C* X) ⟩
X + C * C* * X
≈⟨ commS sh sh X (C * C* * X) ⟩
C * C* * X
+ X
∎
open lemma1 public using (entire-lem1)
private
module lemma2
(sh sh1 : Shape)
(C C* : M s sh sh)
(D : M s sh sh1) (E : M s sh1 sh)
(Δ* : M s sh1 sh1) where
X = D * Δ* * E * C*
entire-lem2 :
C * C* + (C * C* * X + X) ≃S
C * (C* + C* * X) + X
entire-lem2 =
let open EqReasoning setoidS
in begin
C * C* + (C * C* * X + X)
≈⟨ symS sh sh (assocS sh sh (C * C*) (C * C* * X) X) ⟩
(C * C* + C * C* * X) + X
≈⟨ <+> sh sh
(symS sh sh
(distlS C C* (C* * X)))
(reflS sh sh) ⟩
C * (C* + C* * X) + X
∎
open lemma2 public using (entire-lem2)
private
module lemma3
(sh sh1 : Shape)
(C* : M s sh sh)
(D : M s sh sh1)
(E : M s sh1 sh)
(F : M s sh1 sh1)
(Δ* : M s sh1 sh1) where
Δ : M s sh1 sh1
Δ = F + E * C* * D
entire-lem3 :
(Δ * Δ*) * E * C* ≃S
E * C* * D * Δ* * E * C*
+ F * Δ* * E * C*
entire-lem3 =
let open EqReasoning setoidS
in begin
(Δ * Δ*) * E * C*
≈⟨ *-assocS sh1 sh1 sh1 sh Δ Δ* (E * C*) ⟩ -- *-assocS
Δ * Δ* * E * C*
≡⟨ refl ⟩ -- def of Δ
(F + E * C* * D) * Δ* * E * C*
≈⟨ (distrS {sh1}{sh1}{sh}
(Δ* * E * C*) F (E * C* * D)) ⟩ -- <+> reflS distrS
F * Δ* * E * C*
+ (E * C* * D) * Δ* * E * C*
≈⟨ (commS sh1 sh (F * Δ* * E * C*) ((E * C* * D) * Δ* * E * C*)) ⟩ -- <+> reflS commS
(E * C* * D) * Δ* * E * C*
+ F * Δ* * E * C*
≈⟨ <+> sh1 sh {(E * C* * D) * Δ* * E * C*}{((E * C*) * D) * Δ* * E * C*}
{F * Δ* * E * C*}{F * Δ* * E * C*}
(<*> sh1 sh1 sh {(E * C* * D)}{(E * C*) * D}{Δ* * E * C*}{Δ* * E * C*}
(symS sh1 sh1 {(E * C*) * D}{E * C* * D}
(*-assocS sh1 sh sh sh1
E C* D))
(reflS sh1 sh))
(reflS sh1 sh) ⟩ -- (<+> *-assocS reflS)
((E * C*) * D) * Δ* * E * C*
+ F * Δ* * E * C*
≈⟨ <+> sh1 sh {((E * C*) * D) * Δ* * E * C*}{(E * C*) * D * Δ* * E * C*}
{F * Δ* * E * C*}{F * Δ* * E * C*}
(*-assocS sh1 sh sh1 sh
(E * C*) D (Δ* * E * C*))
(reflS sh1 sh) ⟩ -- (<+> *-assocS reflS)
(E * C*) * D * Δ* * E * C*
+ F * Δ* * E * C*
≈⟨ <+> sh1 sh {(E * C*) * D * Δ* * E * C*}{E * C* * D * Δ* * E * C*}
{_}{_}
(*-assocS sh1 sh sh sh
E C* (D * Δ* * E * C*))
(reflS sh1 sh) ⟩ -- (<+> *-assocS reflS)
E * C* * D * Δ* * E * C*
+ F * Δ* * E * C*
∎
open lemma3 public using (entire-lem3)
entireQS : ∀ {sh} (c : M s sh sh) → Σ (M s sh sh) λ c* → c* ≃S I + c * c*
entireQS {L} (One w) =
let (c ,, p) = entireQ w
in (One c ,, p)
entireQS {B sh sh1} (Q C D
E F) =
let
C* ,, ih_C = entireQS C
Δ = F + E * C* * D
Δ* ,, ih_Δ = entireQS Δ
in
Q (C* + C* * D * Δ* * E * C*) (C* * D * Δ*)
(Δ* * E * C*) Δ* ,,
(let open EqReasoning setoidS
in begin
C* + C* * D * Δ* * E * C*
≈⟨ <+> sh sh
{C*}{I + C * C*}{C* * D * Δ* * E * C*}
{C * C* * D * Δ* * E * C* + D * Δ* * E * C*}
ih_C
(entire-lem1 sh sh1 C C* D E Δ* ih_C) ⟩
(I + C * C*)
+ C * C* * D * Δ* * E * C* + D * Δ* * E * C*
≈⟨ assocS sh sh I (C * C*) (C * C* * D * Δ* * E * C* + D * Δ* * E * C*) ⟩
I + C * C*
+ C * C* * D * Δ* * E * C* + D * Δ* * E * C*
≈⟨ <+> sh sh {I}{I}
{C * C* + C * C* * D * Δ* * E * C* + D * Δ* * E * C*}
{(C * (C* + C* * D * Δ* * E * C*) + D * Δ* * E * C*)}
(reflS sh sh)
(entire-lem2 sh sh1 C C* D E Δ*) ⟩
I + C * (C* + C* * D * Δ* * E * C*) + D * Δ* * E * C*
∎) ,
(let open EqReasoning setoidS
in begin
C* * D * Δ*
≈⟨ <*> sh sh sh1 {C*}{I + C * C*}
{D * Δ*}{D * Δ*}
ih_C (reflS sh sh1) ⟩
(I + C * C*) * D * Δ*
≈⟨ distrS (D * Δ*) I (C * C*) ⟩
I * (D * Δ*) + (C * C*) * (D * Δ*)
≈⟨ <+> sh sh1 {I * (D * Δ*)}{D * Δ*}{_}{_}
(*-identlS (D * Δ*))
(reflS sh sh1) ⟩
D * Δ* + (C * C*) * (D * Δ*)
≈⟨ commS sh sh1 (D * Δ*) ((C * C*) * (D * Δ*)) ⟩
(C * C*) * D * Δ* + D * Δ*
≈⟨ <+> sh sh1 {(C * C*) * D * Δ*}{C * C* * D * Δ*}{_}{_}
(*-assocS sh sh sh sh1 C C* (D * Δ*))
(reflS sh sh1) ⟩
C * C* * D * Δ* + D * Δ*
≈⟨ symS sh sh1 {zerS sh sh1 + C * C* * D * Δ* + D * Δ*}
{C * C* * D * Δ* + D * Δ*}
(identSˡ sh sh1 (C * C* * D * Δ* + D * Δ*)) ⟩
zerS sh sh1 + C * C* * D * Δ* + D * Δ*
∎) ,
(let open EqReasoning setoidS
in begin
Δ* * E * C*
≈⟨ <*> sh1 sh1 sh {Δ*}{I + Δ * Δ*}{E * C*}{E * C*}
ih_Δ
(reflS sh1 sh) ⟩ -- <*> ih_Δ reflS
(I + Δ * Δ*) * E * C*
≈⟨ lemma2-1-1 sh1 sh (Δ * Δ*) (E * C*) ⟩ -- lemma 2.1-1
E * C* + (Δ * Δ*) * E * C*
≈⟨ <+> sh1 sh {E * C*}{E * C*}
{(Δ * Δ*) * E * C*}{E * C* * D * Δ* * E * C* + F * Δ* * E * C*}
(reflS sh1 sh)
(entire-lem3 sh sh1 C* D E F Δ*) ⟩
E * C*
+ E * C* * D * Δ* * E * C*
+ F * Δ* * E * C*
≈⟨ symS sh1 sh {(E * C*
+ E * C* * D * Δ* * E * C*)
+ F * Δ* * E * C*}{E * C*
+ E * C* * D * Δ* * E * C*
+ F * Δ* * E * C*}
(assocS sh1 sh (E * C*) (E * C* * D * Δ* * E * C*) (F * Δ* * E * C*)) ⟩
(E * C*
+ E * C* * D * Δ* * E * C*)
+ F * Δ* * E * C*
≈⟨ <+> sh1 sh
{E * C* + E * C* * D * Δ* * E * C*}{E * (C* + C* * D * Δ* * E * C*)}
{F * Δ* * E * C*}{F * Δ* * E * C*}
(symS sh1 sh {E * (C* + C* * D * Δ* * E * C*)}{E * C* + E * C* * D * Δ* * E * C*}
(distlS E C* (C* * D * Δ* * E * C*)))
(reflS sh1 sh) ⟩ -- <+> (symS distlS) reflS
E * (C* + C* * D * Δ* * E * C*)
+ F * Δ* * E * C*
≈⟨ symS sh1 sh {zerS sh1 sh
+ (E * (C* + C* * D * Δ* * E * C*)
+ F * Δ* * E * C*)}{E * (C* + C* * D * Δ* * E * C*)
+ F * Δ* * E * C*}
(identSˡ sh1 sh (E * (C* + C* * D * Δ* * E * C*) + F * Δ* * E * C*)) ⟩ -- symS identSˡ
zerS sh1 sh
+ E * (C* + C* * D * Δ* * E * C*)
+ F * Δ* * E * C*
∎) ,
(let open EqReasoning setoidS
in begin
Δ*
≈⟨ ih_Δ ⟩
I + Δ * Δ*
≡⟨ refl ⟩
I + (F + E * C* * D) * Δ*
≈⟨ <+> sh1 sh1 {I}{I}{(F + E * C* * D) * Δ*}{F * Δ* + (E * C* * D) * Δ*}
(reflS sh1 sh1)
(distrS Δ* F (E * C* * D)) ⟩
I + F * Δ* + (E * C* * D) * Δ*
≈⟨ <+> sh1 sh1 {_}{_}{F * Δ* + (E * C* * D) * Δ*}{(E * C* * D) * Δ* + F * Δ*}
(reflS sh1 sh1)
(commS sh1 sh1 (F * Δ*) ((E * C* * D) * Δ*)) ⟩
I + (E * C* * D) * Δ* + F * Δ*
≈⟨ <+> sh1 sh1 {I}{I}
{(E * C* * D) * Δ* + F * Δ*}{E * (C* * D) * Δ* + F * Δ*}
(reflS sh1 sh1)
(<+> sh1 sh1 {(E * C* * D) * Δ*}{E * (C* * D) * Δ*}
{F * Δ*}{F * Δ*}
(*-assocS sh1 sh sh1 sh1 E (C* * D) Δ*)
(reflS sh1 sh1)) ⟩
I + E * (C* * D) * Δ* + F * Δ*
≈⟨ <+> sh1 sh1 {I}{I}{E * (C* * D) * Δ* + F * Δ*}{E * C* * D * Δ* + F * Δ*}
(reflS sh1 sh1)
(<+> sh1 sh1 {E * (C* * D) * Δ*}{E * C* * D * Δ*}{F * Δ*}{F * Δ*}
(<*> sh1 sh sh1 {E}{E}{(C* * D) * Δ*}{C* * D * Δ*}
(reflS sh1 sh)
(*-assocS sh sh sh1 sh1 C* D Δ*))
(reflS sh1 sh1)) ⟩
I + E * C* * D * Δ* + F * Δ*
∎)
Square : Shape → ClosedSemiRing
Square shape =
record
{ sr = SquareSR shape
; entireQ = entireQS }
\end{code}
%endif