-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_domainnet.py
460 lines (374 loc) · 16.2 KB
/
main_domainnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
import os
import json
import wandb
import pandas as pd
import numpy as np
from accelerate import Accelerator
from omegaconf import OmegaConf
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.modules.loss import _Loss
import timm
from timm import create_model
from datasets import create_dataset
from query_strategies import torch_seed
from query_strategies import create_query_strategy, \
create_is_labeled_unlabeled, \
create_id_ood_targets, \
create_id_testloader, \
create_scheduler, create_optimizer
from query_strategies.utils import MyEncoder
from train import load_resume, test, fit
from arguments import parser
from main import make_directory
class ImageEncoder(nn.Module):
def __init__(self, modelname, num_classes, img_size, only_classifier: bool = False):
super(ImageEncoder, self).__init__()
self.only_classifier = only_classifier
self.encoder = create_model(modelname, pretrained=True, img_size=img_size, num_classes=0)
for param in self.encoder.parameters():
param.requires_grad = False
self.num_classes = num_classes
self.fc = nn.Linear(self.encoder.embed_dim, num_classes)
@torch.no_grad()
def forward_features(self, x):
if self.only_classifier:
return x
else:
out = self.encoder(x)
return out
def forward(self, x):
out = self.forward_features(x)
out = self.fc(out)
return out
class BalancedSoftmax(_Loss):
"""
Balanced Softmax Loss
"""
def __init__(self, num_per_cls: list):
super(BalancedSoftmax, self).__init__()
self.num_per_cls = torch.tensor(num_per_cls)
def forward(self, input, label, reduction='mean'):
return balanced_softmax_loss(labels=label, logits=input, num_per_cls=self.num_per_cls, reduction=reduction)
def balanced_softmax_loss(labels, logits, num_per_cls, reduction):
"""Compute the Balanced Softmax Loss between `logits` and the ground truth `labels`.
Args:
labels: A int tensor of size [batch].
logits: A float tensor of size [batch, no_of_classes].
num_per_cls: A int tensor of size [no of classes].
reduction: string. One of "none", "mean", "sum"
Returns:
loss: A float tensor. Balanced Softmax Loss.
"""
npc = num_per_cls.type_as(logits)
npc = npc.unsqueeze(0).expand(logits.shape[0], -1)
logits = logits + npc.log()
loss = F.cross_entropy(input=logits, target=labels, reduction=reduction)
return loss
# def create_is_labeled_unlabeled(trainset, size: int, seed: int):
# '''
# Args:
# - trainset (torch.utils.data.Dataset): trainset
# - size (int): represents the absolute number of train samples.
# - seed (int): seed for random state
# Return:
# - labeled_idx (np.ndarray): selected labeled indice
# - unlabeled_idx (np.ndarray): selected unlabeled indice
# '''
# torch_seed(seed)
# id_total_idx = trainset.file_info[trainset.file_info['domain'] == trainset.in_domain].index.tolist()
# ood_total_idx = trainset.file_info[trainset.file_info['domain'] != trainset.in_domain].index.tolist()
# print("# Total ID: {}, OOD: {}".format(len(id_total_idx), len(ood_total_idx)))
# c_size = int(size / len(trainset.classes))
# id_class_idx = trainset.file_info.loc[trainset.file_info['domain'] == trainset.in_domain, 'class_idx']
# lb_idx = []
# for c in id_class_idx.unique():
# id_c_idx = np.random.choice(id_class_idx[id_class_idx == c].index, size=c_size, replace=False)
# lb_idx.extend(id_c_idx)
# ulb_idx = list(set(id_total_idx + ood_total_idx) - set(lb_idx))
# print("# Labeled in: {}, Unlabeled: {}".format(len(lb_idx), len(ulb_idx)))
# # defined empty labeled index
# is_labeled = np.zeros(len(trainset), dtype=bool)
# is_unlabeled = np.zeros(len(trainset), dtype=bool)
# is_ood = np.zeros(len(trainset), dtype=bool)
# is_labeled[lb_idx] = True
# is_unlabeled[ulb_idx] = True
# return is_labeled, is_unlabeled, is_ood
def openset_al_run(cfg: dict, trainset, testset, savedir: str):
torch_seed(cfg.DEFAULT.seed)
# set accelerator
accelerator = Accelerator(
gradient_accumulation_steps = cfg.TRAIN.grad_accum_steps,
mixed_precision = cfg.TRAIN.mixed_precision
)
# set device
print('Device: {}'.format(accelerator.device))
# set active learning arguments
nb_round = (cfg.AL.n_end - cfg.AL.n_start)/cfg.AL.n_query
if nb_round % int(nb_round) != 0:
nb_round = int(nb_round) + 1
else:
nb_round = int(nb_round)
# logging
print('[total samples] {}, [initial samples] {} [query samples] {} [end samples] {} [total round] {}'.format(
len(trainset), cfg.AL.n_start, cfg.AL.n_query, cfg.AL.n_end, nb_round))
# create ID and OOD targets
trainset, id_targets = create_id_ood_targets(
dataset = trainset,
nb_id_class = cfg.AL.nb_id_class,
seed = cfg.DEFAULT.seed,
id_targets = cfg.DATASET.get('predefined_id_targets', []),
use_majority = cfg.DATASET.get('use_majority', False)
)
testset, id_targets_check = create_id_ood_targets(
dataset = testset,
nb_id_class = cfg.AL.nb_id_class,
seed = cfg.DEFAULT.seed,
id_targets = id_targets,
)
assert sum(id_targets == id_targets_check) == cfg.AL.nb_id_class, "ID targets are not matched"
# save selected ID targets
json.dump(
obj = {'target_ids': list(map(int, id_targets))},
fp = open(os.path.join(savedir, 'target_ids.json'), 'w'),
indent = '\t'
)
# inital sampling labeling
is_labeled, is_unlabeled, is_ood = create_is_labeled_unlabeled(
trainset = trainset,
id_targets = id_targets,
size = cfg.AL.n_start,
ood_ratio = cfg.AL.ood_ratio,
seed = cfg.DEFAULT.seed,
method = cfg.AL.init.method,
init_ood = cfg.AL.init.get('init_ood', True),
)
# load visual encoder
if cfg.TRAIN.get('params', False).get('return_features', False):
only_classifier = True
trainset.get_features(savedir=cfg.TRAIN.params.savedir_features, modelname=cfg.MODEL.name, is_train=True)
testset.get_features(savedir=cfg.TRAIN.params.savedir_features, modelname=cfg.MODEL.name, is_train=False)
trainset.return_features = True
testset.return_features = True
else:
only_classifier = False
model = ImageEncoder(
modelname = cfg.MODEL.name,
num_classes = cfg.DATASET.num_classes,
img_size = cfg.DATASET.img_size,
only_classifier = only_classifier
)
data_config = timm.data.resolve_model_data_config(model.encoder)
data_config['input_size'] = (3, cfg.DATASET.img_size, cfg.DATASET.img_size)
trainset.transform = timm.data.create_transform(**data_config, is_training=True)
testset.transform = timm.data.create_transform(**data_config, is_training=False)
# select strategy
openset_params = {
'is_openset' : True,
'is_unlabeled' : is_unlabeled,
'is_ood' : is_ood,
'id_classes' : trainset.classes[id_targets],
'savedir' : savedir,
'seed' : cfg.DEFAULT.seed,
'accelerator' : accelerator
}
openset_params.update(cfg.AL.get('openset_params', {}))
openset_params.update(cfg.AL.get('params', {}))
strategy = create_query_strategy(
strategy_name = cfg.AL.strategy,
model = model,
dataset = trainset,
transform = testset.transform,
sampler_name = cfg.DATASET.sampler_name,
is_labeled = is_labeled,
n_query = cfg.AL.n_query,
n_subset = cfg.AL.n_subset,
batch_size = cfg.DATASET.test_batch_size,
num_workers = cfg.DATASET.num_workers,
steps_per_epoch = cfg.TRAIN.params.get('steps_per_epoch', 0),
use_diverse = cfg.AL.get('use_diverse', False),
**openset_params
)
# define test dataloader
testloader = create_id_testloader(
dataset = testset,
id_targets = id_targets,
batch_size = cfg.DATASET.test_batch_size,
num_workers = cfg.DATASET.num_workers
)
# resume
if cfg.TRAIN.get('resume', False).get('use', False):
is_resume = True
resume_info = load_resume(
ckp_path = cfg.TRAIN.resume.ckp_path,
ckp_round = cfg.TRAIN.resume.ckp_round,
strategy = strategy,
seed = cfg.DEFAULT.seed,
is_openset = cfg.AL.get('ood_ratio', False)
)
model = resume_info['model']
strategy = resume_info['strategy']
start_round = resume_info['start_round']
history = resume_info['history']
query_log_df, nb_labeled_df = history['query_log'], history['nb_labeled']
log_df_test = history['log']['test']
metrics_log_test = history['metrics']['test']
model = accelerator.prepare(model)
else:
is_resume = False
start_round = 0
# define log dataframe
log_df_test = pd.DataFrame(
columns=['round', 'auroc', 'f1', 'recall', 'precision', 'bcr', 'acc', 'loss']
)
# query log dataframe
query_log_df = pd.DataFrame({'idx': range(len(is_labeled)), 'is_unlabel': np.zeros(len(is_labeled), dtype=bool)})
query_log_df.loc[is_unlabeled, 'is_unlabel'] = True
query_log_df['query_round'] = None
query_log_df['ID_query_round'] = None
query_log_df.loc[np.r_[np.where(is_labeled==True)[0], np.where(is_ood==True)[0]], 'query_round'] = 'round0'
query_log_df.loc[is_labeled, 'ID_query_round'] = 'round0'
# number of labeled set log dataframe
nb_labeled_df = pd.DataFrame({'round': [0], 'nb_labeled': [is_labeled.sum()]})
# define dict to save confusion matrix and metrics per class
metrics_log_test = {}
nb_round += start_round
# run
for r in range(start_round, nb_round+1):
if r != 0:
# query sampling
query_idx = strategy.query(model)
# update query
id_query_idx = strategy.update(query_idx=query_idx)
# check resume
if is_resume:
is_resume = False
# define accelerator
accelerator = Accelerator(
gradient_accumulation_steps = cfg.TRAIN.grad_accum_steps,
mixed_precision = cfg.TRAIN.mixed_precision
)
if hasattr(strategy, 'accelerator'):
strategy.accelerator = accelerator
# save query index
query_log_df.loc[query_idx, 'query_round'] = f'round{r}'
query_log_df.loc[id_query_idx, 'ID_query_round'] = f'round{r}'
query_log_df.to_csv(os.path.join(savedir, 'query_log.csv'), index=False)
# save nb_labeled
nb_labeled_r = {'round': [r], 'nb_labeled': [strategy.is_labeled.sum()]}
nb_labeled_df = pd.concat([nb_labeled_df, pd.DataFrame(nb_labeled_r, index=[len(nb_labeled_df)])], axis=0)
nb_labeled_df.to_csv(os.path.join(savedir, 'nb_labeled.csv'), index=False)
# logging
print('[Round {}/{}] training samples: {}'.format(r, nb_round, sum(strategy.is_labeled)))
# build Model
if not cfg.AL.get('continual', False) or r == 0:
model = strategy.init_model()
model = accelerator.prepare(model)
# get trainloader
trainloader = strategy.get_trainloader()
trainloader, testloader = accelerator.prepare(trainloader, testloader)
# optimizer
optimizer = create_optimizer(
opt_name = cfg.OPTIMIZER.name,
model = model,
lr = cfg.OPTIMIZER.lr,
opt_params = cfg.OPTIMIZER.get('params',{}),
backbone = True
)
# scheduler
scheduler = create_scheduler(
sched_name = cfg.SCHEDULER.name,
optimizer = optimizer,
epochs = cfg.TRAIN.epochs,
params = cfg.SCHEDULER.get('params', {}),
warmup_params = cfg.SCHEDULER.get('warmup_params', {})
)
for k, opt in optimizer.items():
optimizer[k] = accelerator.prepare(opt)
for k, sched in scheduler.items():
scheduler[k] = accelerator.prepare(sched)
# initialize wandb
if cfg.TRAIN.wandb.use:
wandb.init(name=f'{cfg.DEFAULT.exp_name}_round{r}', project=cfg.TRAIN.wandb.project_name, entity=cfg.TRAIN.wandb.entity, config=OmegaConf.to_container(cfg))
# strategy.criterion = BalancedSoftmax(num_per_cls=np.unique(trainset.targets[strategy.is_labeled], return_counts=True)[1])
# fitting model
fit(
model = model,
trainloader = trainloader,
testloader = None,
criterion = strategy.loss_fn,
optimizer = optimizer,
scheduler = scheduler,
accelerator = accelerator,
epochs = cfg.TRAIN.epochs,
use_wandb = cfg.TRAIN.wandb.use,
log_interval = cfg.TRAIN.log_interval,
seed = cfg.DEFAULT.seed,
**cfg.TRAIN.get('params', {})
)
# ====================
# test results
# ====================
test_results = test(
model = model,
dataloader = testloader,
criterion = strategy.loss_fn,
log_interval = cfg.TRAIN.log_interval,
return_per_class = True,
**cfg.TRAIN.get('params', {})
)
# save results per class
metrics_log_test.update({
f'round{r}': test_results['per_class']
})
json.dump(
obj = metrics_log_test,
fp = open(os.path.join(savedir, f"round{nb_round}-seed{cfg.DEFAULT.seed}_test-per_class.json"), 'w'),
cls = MyEncoder,
indent = '\t'
)
del test_results['per_class']
# save results
log_metrics = {'round':r}
log_metrics.update([(k, v) for k, v in test_results.items()])
log_df_test = pd.concat([log_df_test, pd.DataFrame(log_metrics, index=[len(log_df_test)])], axis=0)
log_df_test.round(4).to_csv(
os.path.join(savedir, f"round{nb_round}-seed{cfg.DEFAULT.seed}_test.csv"),
index=False
)
print('append result [shape: {}]'.format(log_df_test.shape))
wandb.finish()
def run(cfg):
trainset, _, testset = create_dataset(
datadir = cfg.DATASET.datadir,
dataname = cfg.DATASET.name,
img_size = cfg.DATASET.img_size,
mean = cfg.DATASET.mean,
std = cfg.DATASET.std,
aug_info = cfg.DATASET.aug_info,
**cfg.DATASET.get('params', {})
)
# make save directory
al_name = f"total_{cfg.AL.n_end}-init_{cfg.AL.n_start}-query_{cfg.AL.n_query}"
savedir = os.path.join(
cfg.DEFAULT.savedir, cfg.DATASET.name, cfg.MODEL.name,
cfg.AL.strategy, cfg.DEFAULT.exp_name, al_name, f'seed{cfg.DEFAULT.seed}'
)
make_directory(
savedir = savedir,
is_resume = cfg.TRAIN.get('resume', False).get('use', False)
)
# save config
OmegaConf.save(cfg, os.path.join(savedir, 'configs.yaml'))
openset_al_run(
cfg = cfg,
trainset = trainset,
testset = testset,
savedir = savedir,
)
if __name__=='__main__':
# config
cfg = parser()
# run
run(cfg)