-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspeech_translator.py
208 lines (175 loc) · 7.9 KB
/
speech_translator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import argparse
import queue
import threading
import time
import json
import os
import asyncio
from datetime import datetime
from typing import List, Dict
from concurrent.futures import ThreadPoolExecutor
import riva.client
from riva.client.argparse_utils import add_asr_config_argparse_parameters, add_connection_argparse_parameters
import riva.client.audio_io
class LanguageTranslator:
def __init__(self, nmt_server: str, target_lang: str, output_file: str, source_lang: str):
self.nmt_auth = riva.client.Auth(None, False, nmt_server)
self.nmt_client = riva.client.NeuralMachineTranslationClient(self.nmt_auth)
self.target_lang = target_lang
self.source_lang = source_lang
self.output_file = output_file
self.queue = queue.Queue()
self.running = False
def translate_text(self, text: str) -> None:
"""Translate text and write to file"""
try:
response = self.nmt_client.translate(
[text],
"",
self.source_lang,
self.target_lang
)
translated_text = response.translations[0].text
# Write to file
data = {
"timestamp": datetime.now().isoformat(),
"original": text,
"translated": translated_text,
"source_lang": self.source_lang,
"target_lang": self.target_lang
}
with open(self.output_file, 'w') as f:
json.dump(data, f)
print(f"\n[{self.target_lang}] Original: {text}")
print(f"[{self.target_lang}] Translated: {translated_text}")
except Exception as e:
print(f"Translation error for {self.target_lang}: {str(e)}")
def process_queue(self):
"""Process translations from the queue"""
while self.running:
try:
text = self.queue.get(timeout=0.5)
self.translate_text(text)
except queue.Empty:
continue
except Exception as e:
print(f"Queue processing error for {self.target_lang}: {str(e)}")
class MultiLanguageSpeechTranslator:
def __init__(self, asr_server: str, nmt_server: str, input_device: int,
target_langs: List[str], output_dir: str, sample_rate_hz: int = 16000,
chunk_size: int = 1600, source_lang: str = 'en-US'):
# ASR setup
self.asr_auth = riva.client.Auth(None, False, asr_server)
self.asr_service = riva.client.ASRService(self.asr_auth)
# Configuration
self.input_device = input_device
self.sample_rate_hz = sample_rate_hz
self.chunk_size = chunk_size
self.source_lang = source_lang
# Create translators for each target language
self.translators: Dict[str, LanguageTranslator] = {}
self.translator_threads = []
for target_lang in target_langs:
output_file = os.path.join(output_dir, f"{target_lang}.json")
translator = LanguageTranslator(
nmt_server=nmt_server,
target_lang=target_lang,
output_file=output_file,
source_lang=source_lang
)
self.translators[target_lang] = translator
def get_asr_config(self):
return riva.client.StreamingRecognitionConfig(
config=riva.client.RecognitionConfig(
encoding=riva.client.AudioEncoding.LINEAR_PCM,
language_code=self.source_lang,
max_alternatives=1,
enable_automatic_punctuation=True,
sample_rate_hertz=self.sample_rate_hz,
audio_channel_count=1,
),
interim_results=False,
)
def handle_asr_response(self, responses):
"""Process ASR responses and distribute to all language queues simultaneously"""
for response in responses:
if not response.results:
continue
for result in response.results:
if result.is_final:
transcript = result.alternatives[0].transcript
if transcript.strip():
# Send to all language queues simultaneously
for translator in self.translators.values():
translator.queue.put(transcript)
def run(self):
"""Main method to start the speech translation pipeline"""
# Start all translator threads
for translator in self.translators.values():
translator.running = True
thread = threading.Thread(target=translator.process_queue)
thread.start()
self.translator_threads.append(thread)
try:
# Start microphone stream
with riva.client.audio_io.MicrophoneStream(
self.sample_rate_hz,
self.chunk_size,
device=self.input_device,
) as audio_stream:
# Process audio stream
responses = self.asr_service.streaming_response_generator(
audio_chunks=audio_stream,
streaming_config=self.get_asr_config(),
)
# Handle responses
self.handle_asr_response(responses)
except KeyboardInterrupt:
print("\nStopping speech translation...")
finally:
# Stop all translators
for translator in self.translators.values():
translator.running = False
# Wait for all threads to finish
for thread in self.translator_threads:
thread.join()
def parse_args():
parser = argparse.ArgumentParser(
description="Concurrent multi-language real-time speech-to-text translation using Riva AI Services",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
default_device_info = riva.client.audio_io.get_default_input_device_info()
default_device_index = None if default_device_info is None else default_device_info['index']
parser.add_argument("--asr-server", type=str, required=True, help="ASR server address (host:port)")
parser.add_argument("--nmt-server", type=str, required=True, help="NMT server address (host:port)")
parser.add_argument("--input-device", type=int, default=default_device_index, help="Input audio device index")
parser.add_argument("--source-lang", type=str, default="en-US", help="Source language code")
parser.add_argument("--target-langs", type=str, required=True, help="Comma-separated list of target language codes")
parser.add_argument("--output-dir", type=str, required=True, help="Output directory for translation files")
parser.add_argument("--list-devices", action="store_true", help="List available input devices")
return parser.parse_args()
def main():
args = parse_args()
if args.list_devices:
riva.client.audio_io.list_input_devices()
return
# Ensure output directory exists
os.makedirs(args.output_dir, exist_ok=True)
# Split target languages
target_langs = [lang.strip() for lang in args.target_langs.split(',')]
translator = MultiLanguageSpeechTranslator(
asr_server=args.asr_server,
nmt_server=args.nmt_server,
input_device=args.input_device,
target_langs=target_langs,
output_dir=args.output_dir,
source_lang=args.source_lang
)
print(f"Starting concurrent multi-language speech translation from {args.source_lang}")
print(f"Target languages: {', '.join(target_langs)}")
print(f"Writing translations to: {args.output_dir}")
print("Speak into your microphone. Press Ctrl+C to stop.")
print("-"*50)
translator.run()
if __name__ == "__main__":
main()