-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
205 lines (166 loc) · 7.01 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
# eval.py ../featureextraction/nytimes.postfeats.norm.out.5 "lrm" ../featureextraction/predictions_for_test.out.5
# This script assumes that the ground truth labels are in the featurefile (also for the oracle ranking)
import operator
import sys
import re
import numpy
featurefile = sys.argv[1]
methodname = sys.argv[2]
predictionsfile = sys.argv[3]
models = dict()
models[methodname] = 1
def get_selected_from_featurefile(featurefile):
feat = open(featurefile)
threadids = []
postids = []
selecteds = []
for line in feat:
columns = line.rstrip().split("\t")
selected = columns[-1]
threadid = columns[0]
postid = columns[1]
if re.match("[0-9.-]+",selected):
selecteds.append(selected)
threadids.append(threadid)
postids.append(postid)
#print(threadid,postid,selected)
return threadids,postids,selecteds
def get_oracle_ranking(featurefile):
array_of_threadids, array_of_postids, array_of_selecteds = get_selected_from_featurefile(featurefile)
for i in range(0,len(array_of_threadids)):
threadid = array_of_threadids[i]
postid = array_of_postids[i]
selected = array_of_selecteds[i]
selected_for_this_thread = dict()
if threadid in selected_per_thread:
selected_for_this_thread = selected_per_thread[threadid]
selected_for_this_thread[postid] = selected
selected_per_thread[threadid] = selected_for_this_thread
ranked_postids_per_thread = dict()
for threadid in selected_per_thread:
selected_for_this_thread = selected_per_thread[threadid]
ranked_postids_with_score = sorted(selected_for_this_thread.items(), key=operator.itemgetter(1),reverse=True)
ranked_postids = []
for (postid,score) in ranked_postids_with_score:
ranked_postids.append(postid)
print ("oracle:",predictions_per_thread[threadid],selected_per_thread[threadid])
ranked_postids_per_thread[threadid] = ranked_postids
return ranked_postids_per_thread
def get_predictions_from_predictionsfile(predictionsfile):
pred = open(predictionsfile)
predictions = []
for line in pred:
prediction = line.rstrip()
if re.match("[0-9.-]+",prediction):
predictions.append(float(prediction))
#print (prediction)
return predictions
def compute_jaccard_index(set_1, set_2):
if len(set_1)+len(set_2)>0:
n = len(set_1.intersection(set_2))
return n / float(len(set_1) + len(set_2) - n)
else:
return 1
def compute_precision(model,reference):
if len(model)+len(reference)>0:
tp=len(model.intersection(reference))
fp=len(model-reference)
if tp > 0:
return float(tp)/(float(fp)+float(tp))
else:
return 0
else:
return 1
def compute_recall(model,reference):
if len(model)+len(reference)>0:
tp=len(model.intersection(reference))
fn=len(reference-model)
if tp > 0:
return float(tp)/(float(fn)+float(tp))
else:
return 0
else:
return 1
def compute_kappa(list1,list2):
if not len(list1) == len(list2):
print ("Error: lists not same length: ", list1, list2)
elif numpy.sum(list1)+numpy.sum(list2)>0:
E1 = float(numpy.sum(list1))/float(len(list1)) * float(numpy.sum(list2))/float(len(list2)) #sum is the number of 1s
E0 = float((len(list1)-numpy.sum(list1)))/float(len(list1)) * float((len(list2)-numpy.sum(list2)))/float(len(list2)) # len - sum is the number of 0s
ExpAgr = E1+E0
count_agreed = 0
for j in range(0,len(list1)-1):
if not list1[j]+list2[j] == 1:
# agreed if sum is 2 or 0
count_agreed += 1
MeasAgr = float(count_agreed)/float(len(list1))
#print E1, E0, ExpAgr, MeasAgr
k = (MeasAgr-ExpAgr)/(1-ExpAgr)
return k
else:
return 1
def print_evaluation(ranked_postids_per_thread,method,true_set):
for cutoff in range (1,20):
selected_set_by_model = set()
for threadid in ranked_postids_per_thread:
ranked_postids = ranked_postids_per_thread[threadid]
#print (threadid,ranked_postids)
selectedposts = dict()
k=0
for postid in ranked_postids:
k +=1
if k <= cutoff:
selectedposts[postid] = 1
selected_item = threadid+"_"+postid
selected_set_by_model.add(selected_item)
#print ("selected:",selected_set_by_model)
#print ("true_set:",true_set)
precision = compute_precision(selected_set_by_model,true_set)
recall = compute_recall(selected_set_by_model,true_set)
#print (method,"\t",cutoff,"\t",recall, "\t", precision)
f1 = 2*(precision*recall)/(precision+recall)
print (method,"\t",cutoff,"\t",recall, "\t", precision, "\t", f1)
'''
MAIN
'''
#print (models)
#print (usernames)
for method in models:
print ("METHOD:",method)
array_of_threadids, array_of_postids, array_of_selecteds = get_selected_from_featurefile(featurefile)
array_of_predictions = get_predictions_from_predictionsfile(predictionsfile)
predictions_per_thread = dict()
selected_per_thread = dict()
true_set = set()
for i in range(0,len(array_of_threadids)):
threadid = array_of_threadids[i]
postid = array_of_postids[i]
selected = array_of_selecteds[i]
predicted = array_of_predictions[i]
#print (i,threadid,postid,selected,predicted)
predictions_for_this_thread = dict()
if threadid in predictions_per_thread:
predictions_for_this_thread = predictions_per_thread[threadid]
predictions_for_this_thread[postid] = predicted
predictions_per_thread[threadid] = predictions_for_this_thread
#selected_for_this_thread = dict()
#if threadid in selected_per_thread:
# selected_for_this_thread = selected_per_thread[threadid]
#selected_for_this_thread[postid] = selected
#selected_per_thread[threadid] = selected_for_this_thread
if selected == "1":
selected_item = threadid+"_"+postid
true_set.add(selected_item)
ranked_postids_per_thread = dict()
for threadid in predictions_per_thread:
predictions_for_this_thread = predictions_per_thread[threadid]
ranked_postids_with_score = sorted(predictions_for_this_thread.items(), key=operator.itemgetter(1),reverse=True)
ranked_postids = []
for (postid,score) in ranked_postids_with_score:
ranked_postids.append(postid)
# print (predictions_per_thread[threadid],selected_per_thread[threadid])
ranked_postids_per_thread[threadid] = ranked_postids
#print (threadid,ranked_postids)
print_evaluation(ranked_postids_per_thread,method,true_set)
ranked_postids_per_thread_oracle = get_oracle_ranking(featurefile)
print_evaluation(ranked_postids_per_thread_oracle,"oracle",true_set)