forked from siit-vtt/semi-supervised-learning-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
391 lines (335 loc) · 15 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
# this code is modified from the pytorch code: https://github.com/CSAILVision/places365
# JH Kim
#
import argparse
import os
import shutil
import time
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data as data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import preresnet_sd_cifar as preresnet_cifar
import wideresnet
import pdb
import bisect
import loader_cifar as cifar
import loader_cifar_zca as cifar_zca
import loader_svhn as svhn
import math
from math import ceil
import torch.nn.functional as F
from methods import train_sup, train_pi, train_mt, validate
parser = argparse.ArgumentParser(description='PyTorch Semi-supervised learning Training')
parser.add_argument('--arch', '-a', metavar='ARCH', default='wideresnet',
help='model architecture: '+ ' (default: wideresnet)')
parser.add_argument('--model', '-m', metavar='MODEL', default='baseline',
help='model: '+' (default: baseline)', choices=['baseline', 'pi', 'mt'])
parser.add_argument('--optim', '-o', metavar='OPTIM', default='adam',
help='optimizer: '+' (default: adam)', choices=['adam', 'sgd'])
parser.add_argument('--dataset', '-d', metavar='DATASET', default='cifar10_zca',
help='dataset: '+' (default: cifar10)', choices=['cifar10', 'cifar10_zca', 'svhn'])
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=1200, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N', help='mini-batch size (default: 225)')
parser.add_argument('--lr', '--learning-rate', default=0.003, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--weight_l1', '--l1', default=1e-3, type=float,
metavar='W1', help='l1 regularization (default: 1e-3)')
parser.add_argument('--print-freq', '-p', default=100, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--num_classes',default=10, type=int, help='number of classes in the model')
parser.add_argument('--ckpt', default='ckpt', type=str, metavar='PATH',
help='path to save checkpoint (default: ckpt)')
parser.add_argument('--boundary',default=0, type=int, help='different label/unlabel division [0,9]')
parser.add_argument('--gpu',default=0, type=str, help='cuda_visible_devices')
args = parser.parse_args()
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]=str(args.gpu)
best_prec1 = 0
best_test_prec1 = 0
acc1_tr, losses_tr = [], []
losses_cl_tr = []
acc1_val, losses_val, losses_et_val = [], [], []
acc1_test, losses_test, losses_et_test = [], [], []
acc1_t_tr, acc1_t_val, acc1_t_test = [], [], []
learning_rate, weights_cl = [], []
def main():
global args, best_prec1, best_test_prec1
global acc1_tr, losses_tr
global losses_cl_tr
global acc1_val, losses_val, losses_et_val
global acc1_test, losses_test, losses_et_test
global weights_cl
args = parser.parse_args()
print args
if args.dataset == 'svhn':
drop_rate=0.3
widen_factor=3
else:
drop_rate=0.3
widen_factor=3
# create model
if args.arch == 'preresnet':
print("Model: %s"%args.arch)
model = preresnet_cifar.resnet(depth=32, num_classes=args.num_classes)
elif args.arch == 'wideresnet':
print("Model: %s"%args.arch)
model = wideresnet.WideResNet(28, args.num_classes, widen_factor=widen_factor, dropRate=drop_rate, leakyRate=0.1)
else:
assert(False)
if args.model == 'mt':
import copy
model_teacher = copy.deepcopy(model)
model_teacher = torch.nn.DataParallel(model_teacher).cuda()
model = torch.nn.DataParallel(model).cuda()
print model
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
best_prec1 = checkpoint['best_prec1']
model.load_state_dict(checkpoint['state_dict'])
if args.model=='mt': model_teacher.load_state_dict(checkpoint['state_dict'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
if args.optim == 'sgd' or args.optim == 'adam':
pass
else:
print('Not Implemented Optimizer')
assert(False)
ckpt_dir = args.ckpt+'_'+args.dataset+'_'+args.arch+'_'+args.model+'_'+args.optim
ckpt_dir = ckpt_dir + '_e%d'%(args.epochs)
if not os.path.exists(ckpt_dir):
os.makedirs(ckpt_dir)
print(ckpt_dir)
cudnn.benchmark = True
# Data loading code
if args.dataset == 'cifar10':
dataloader = cifar.CIFAR10
num_classes = 10
data_dir = '/tmp/'
normalize = transforms.Normalize(mean=[0.4914, 0.4822, 0.4465],
std=[0.2023, 0.1994, 0.2010])
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=2),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
transform_test = transforms.Compose([
transforms.ToTensor(),
normalize,
])
elif args.dataset == 'cifar10_zca':
dataloader = cifar_zca.CIFAR10
num_classes = 10
data_dir = 'cifar10_zca/cifar10_gcn_zca_v2.npz'
# transform is implemented inside zca dataloader
transform_train = transforms.Compose([
transforms.ToTensor(),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
])
elif args.dataset == 'svhn':
dataloader = svhn.SVHN
num_classes = 10
data_dir = '/tmp/'
normalize = transforms.Normalize(mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5])
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=2),
transforms.ToTensor(),
normalize,
])
transform_test = transforms.Compose([
transforms.ToTensor(),
normalize,
])
labelset = dataloader(root=data_dir, split='label', download=True, transform=transform_train, boundary=args.boundary)
unlabelset = dataloader(root=data_dir, split='unlabel', download=True, transform=transform_train, boundary=args.boundary)
batch_size_label = args.batch_size//2
batch_size_unlabel = args.batch_size//2
if args.model == 'baseline': batch_size_label=args.batch_size
label_loader = data.DataLoader(labelset,
batch_size=batch_size_label,
shuffle=True,
num_workers=args.workers,
pin_memory=True)
label_iter = iter(label_loader)
unlabel_loader = data.DataLoader(unlabelset,
batch_size=batch_size_unlabel,
shuffle=True,
num_workers=args.workers,
pin_memory=True)
unlabel_iter = iter(unlabel_loader)
print("Batch size (label): ", batch_size_label)
print("Batch size (unlabel): ", batch_size_unlabel)
validset = dataloader(root=data_dir, split='valid', download=True, transform=transform_test, boundary=args.boundary)
val_loader = data.DataLoader(validset,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.workers,
pin_memory=True)
testset = dataloader(root=data_dir, split='test', download=True, transform=transform_test)
test_loader = data.DataLoader(testset,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.workers,
pin_memory=True)
# deifine loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss(size_average=False).cuda()
criterion_mse = nn.MSELoss(size_average=False).cuda()
criterion_kl = nn.KLDivLoss(size_average=False).cuda()
criterion_l1 = nn.L1Loss(size_average=False).cuda()
criterions = (criterion, criterion_mse, criterion_kl, criterion_l1)
if args.optim == 'adam':
print('Using Adam optimizer')
optimizer = torch.optim.Adam(model.parameters(), args.lr,
betas=(0.9,0.999),
weight_decay=args.weight_decay)
elif args.optim == 'sgd':
print('Using SGD optimizer')
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
for epoch in range(args.start_epoch, args.epochs):
if args.optim == 'adam':
print('Learning rate schedule for Adam')
lr = adjust_learning_rate_adam(optimizer, epoch)
elif args.optim == 'sgd':
print('Learning rate schedule for SGD')
lr = adjust_learning_rate(optimizer, epoch)
# train for one epoch
if args.model == 'baseline':
print('Supervised Training')
for i in range(10): #baseline repeat 10 times since small number of training set
prec1_tr, loss_tr = train_sup(label_loader, model, criterions, optimizer, epoch, args)
weight_cl = 0.0
elif args.model == 'pi':
print('Pi model')
prec1_tr, loss_tr, loss_cl_tr, weight_cl = train_pi(label_loader, unlabel_loader, model, criterions, optimizer, epoch, args)
elif args.model == 'mt':
print('Mean Teacher model')
prec1_tr, loss_tr, loss_cl_tr, prec1_t_tr, weight_cl = train_mt(label_loader, unlabel_loader, model, model_teacher, criterions, optimizer, epoch, args)
else:
print("Not Implemented ", args.model)
assert(False)
# evaluate on validation set
prec1_val, loss_val = validate(val_loader, model, criterions, args, 'valid')
prec1_test, loss_test = validate(test_loader, model, criterions, args, 'test')
if args.model=='mt':
prec1_t_val, loss_t_val = validate(val_loader, model_teacher, criterions, args, 'valid')
prec1_t_test, loss_t_test = validate(test_loader, model_teacher, criterions, args, 'test')
# append values
acc1_tr.append(prec1_tr)
losses_tr.append(loss_tr)
acc1_val.append(prec1_val)
losses_val.append(loss_val)
acc1_test.append(prec1_test)
losses_test.append(loss_test)
if args.model != 'baseline':
losses_cl_tr.append(loss_cl_tr)
if args.model=='mt':
acc1_t_tr.append(prec1_t_tr)
acc1_t_val.append(prec1_t_val)
acc1_t_test.append(prec1_t_test)
weights_cl.append(weight_cl)
learning_rate.append(lr)
# remember best prec@1 and save checkpoint
if args.model == 'mt':
is_best = prec1_t_val > best_prec1
if is_best:
best_test_prec1_t = prec1_t_test
best_test_prec1 = prec1_test
print("Best test precision: %.3f"%best_test_prec1_t)
best_prec1 = max(prec1_t_val, best_prec1)
dict_checkpoint = {
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'best_prec1': best_prec1,
'best_test_prec1' : best_test_prec1,
'acc1_tr': acc1_tr,
'losses_tr': losses_tr,
'losses_cl_tr': losses_cl_tr,
'acc1_val': acc1_val,
'losses_val': losses_val,
'acc1_test' : acc1_test,
'losses_test' : losses_test,
'acc1_t_tr': acc1_t_tr,
'acc1_t_val': acc1_t_val,
'acc1_t_test': acc1_t_test,
'state_dict_teacher': model_teacher.state_dict(),
'best_test_prec1_t' : best_test_prec1_t,
'weights_cl' : weights_cl,
'learning_rate' : learning_rate,
}
else:
is_best = prec1_val > best_prec1
if is_best:
best_test_prec1 = prec1_test
print("Best test precision: %.3f"%best_test_prec1)
best_prec1 = max(prec1_val, best_prec1)
dict_checkpoint = {
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'best_prec1': best_prec1,
'best_test_prec1' : best_test_prec1,
'acc1_tr': acc1_tr,
'losses_tr': losses_tr,
'losses_cl_tr': losses_cl_tr,
'acc1_val': acc1_val,
'losses_val': losses_val,
'acc1_test' : acc1_test,
'losses_test' : losses_test,
'weights_cl' : weights_cl,
'learning_rate' : learning_rate,
}
save_checkpoint(dict_checkpoint, is_best, args.arch.lower()+str(args.boundary), dirname=ckpt_dir)
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar', dirname='.'):
fpath = os.path.join(dirname, filename + '_latest.pth.tar')
torch.save(state, fpath)
if is_best:
bpath = os.path.join(dirname, filename + '_best.pth.tar')
shutil.copyfile(fpath, bpath)
def adjust_learning_rate(optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 10 at [150, 225, 300] epochs"""
boundary = [args.epochs//2,args.epochs//4*3,args.epochs]
lr = args.lr * 0.1 ** int(bisect.bisect_left(boundary, epoch))
print('Learning rate: %f'%lr)
#print(epoch, lr, bisect.bisect_left(boundary, epoch))
# lr = args.lr * (0.1 ** (epoch // 30))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
def adjust_learning_rate_adam(optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 5 at [240] epochs"""
boundary = [args.epochs//5*4]
lr = args.lr * 0.2 ** int(bisect.bisect_left(boundary, epoch))
print('Learning rate: %f'%lr)
#print(epoch, lr)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
if __name__ == '__main__':
main()