-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathwebsearch_chat_interface.py
219 lines (191 loc) · 7.63 KB
/
websearch_chat_interface.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
try:
import spaces
def maybe_spaces_gpu(fn):
fn = spaces.GPU(fn)
return fn
except ModuleNotFoundError:
print(f'Cannot import hf `spaces` with `import spaces`.')
def maybe_spaces_gpu(fn):
return fn
import os
from gradio.themes import ThemeClass as Theme
import numpy as np
import argparse
import gradio as gr
from typing import Any, Iterator
from typing import Iterator, List, Optional, Tuple
import filelock
import glob
import json
import time
from gradio.routes import Request
from gradio.utils import SyncToAsyncIterator, async_iteration
from gradio.helpers import special_args
import anyio
from typing import AsyncGenerator, Callable, Literal, Union, cast, Generator
from gradio_client.documentation import document, set_documentation_group
from gradio.components import Button, Component
from gradio.events import Dependency, EventListenerMethod
from typing import List, Optional, Union, Dict, Tuple
from tqdm.auto import tqdm
from huggingface_hub import snapshot_download
import inspect
from typing import AsyncGenerator, Callable, Literal, Union, cast
import anyio
from gradio_client import utils as client_utils
from gradio_client.documentation import document
from gradio.blocks import Blocks
from gradio.components import (
Button,
Chatbot,
Component,
Markdown,
State,
Textbox,
get_component_instance,
)
from gradio.events import Dependency, on
from gradio.helpers import create_examples as Examples # noqa: N812
from gradio.helpers import special_args
from gradio.layouts import Accordion, Group, Row
from gradio.routes import Request
from gradio.themes import ThemeClass as Theme
from gradio.utils import SyncToAsyncIterator, async_iteration
from .base_demo import register_demo, get_demo_class, BaseDemo
from ..configs import (
SYSTEM_PROMPT,
MODEL_NAME,
MAX_TOKENS,
TEMPERATURE,
USE_PANEL,
CHATBOT_HEIGHT,
)
from ..globals import MODEL_ENGINE
from .chat_interface import (
CHAT_EXAMPLES,
DATETIME_FORMAT,
gradio_history_to_conversation_prompt,
gradio_history_to_openai_conversations,
get_datetime_string,
format_conversation,
chat_response_stream_multiturn_engine,
CustomizedChatInterface,
ChatInterfaceDemo
)
from .langchain_web_search import (
AnyEnginePipeline,
ChatAnyEnginePipeline,
create_web_search_engine,
)
web_search_llm = None
web_search_chat_model = None
web_search_engine = None
web_search_agent = None
@maybe_spaces_gpu
def chat_web_search_response_stream_multiturn_engine(
message: str,
history: List[Tuple[str, str]],
temperature: float,
max_tokens: int,
system_prompt: Optional[str] = SYSTEM_PROMPT,
):
# global web_search_engine, web_search_llm, web_search_chat_model, web_search_agent, MODEL_ENGINE
global web_search_llm, web_search_chat_model, agent_executor, MODEL_ENGINE
temperature = float(temperature)
# ! remove frequency_penalty
# frequency_penalty = float(frequency_penalty)
max_tokens = int(max_tokens)
message = message.strip()
if len(message) == 0:
raise gr.Error("The message cannot be empty!")
response_output = agent_executor.invoke({"input": message})
print(response_output)
response = response_output['output']
full_prompt = gradio_history_to_conversation_prompt(message.strip(), history=history, system_prompt=system_prompt)
num_tokens = len(MODEL_ENGINE.tokenizer.encode(full_prompt))
yield response, num_tokens
# # ! skip safety
# if DATETIME_FORMAT in system_prompt:
# # ! This sometime works sometimes dont
# system_prompt = system_prompt.format(cur_datetime=get_datetime_string())
# full_prompt = gradio_history_to_conversation_prompt(message.strip(), history=history, system_prompt=system_prompt)
# # ! length checked
# num_tokens = len(MODEL_ENGINE.tokenizer.encode(full_prompt))
# if num_tokens >= MODEL_ENGINE.max_position_embeddings - 128:
# raise gr.Error(f"Conversation or prompt is too long ({num_tokens} toks), please clear the chatbox or try shorter input.")
# print(full_prompt)
# outputs = None
# response = None
# num_tokens = -1
# for j, outputs in enumerate(MODEL_ENGINE.generate_yield_string(
# prompt=full_prompt,
# temperature=temperature,
# max_tokens=max_tokens,
# )):
# if isinstance(outputs, tuple):
# response, num_tokens = outputs
# else:
# response, num_tokens = outputs, -1
# yield response, num_tokens
# print(format_conversation(history + [[message, response]]))
# if response is not None:
# yield response, num_tokens
@register_demo
class WebSearchChatInterfaceDemo(BaseDemo):
@property
def tab_name(self):
return "Web Search"
def create_demo(
self,
title: str | None = None,
description: str | None = None,
**kwargs
) -> gr.Blocks:
global web_search_llm, web_search_chat_model, agent_executor
system_prompt = kwargs.get("system_prompt", SYSTEM_PROMPT)
max_tokens = kwargs.get("max_tokens", MAX_TOKENS)
temperature = kwargs.get("temperature", TEMPERATURE)
model_name = kwargs.get("model_name", MODEL_NAME)
# frequence_penalty = FREQUENCE_PENALTY
# presence_penalty = PRESENCE_PENALTY
# create_web_search_engine()
description = description or "At the moment, Web search is only **SINGLE TURN**, only works well in **English** and may respond unnaturally!"
web_search_llm, web_search_chat_model, agent_executor = create_web_search_engine()
demo_chat = CustomizedChatInterface(
chat_web_search_response_stream_multiturn_engine,
chatbot=gr.Chatbot(
label=model_name,
bubble_full_width=False,
latex_delimiters=[
{ "left": "$", "right": "$", "display": False},
{ "left": "$$", "right": "$$", "display": True},
],
show_copy_button=True,
layout="panel" if USE_PANEL else "bubble",
height=CHATBOT_HEIGHT,
),
textbox=gr.Textbox(placeholder='Type message', lines=1, max_lines=128, min_width=200, scale=8),
submit_btn=gr.Button(value='Submit', variant="primary", scale=0),
title=title,
description=description,
additional_inputs=[
gr.Number(value=temperature, label='Temperature (higher -> more random)'),
gr.Number(value=max_tokens, label='Max generated tokens (increase if want more generation)'),
# gr.Number(value=frequence_penalty, label='Frequency penalty (> 0 encourage new tokens over repeated tokens)'),
# gr.Number(value=presence_penalty, label='Presence penalty (> 0 encourage new tokens, < 0 encourage existing tokens)'),
gr.Textbox(value=system_prompt, label='System prompt', lines=4, interactive=False)
],
examples=[
# ["What is 234.56 raised to the 0.43 power?"],
["What is Langchain?"],
["Give me latest news about Lawrence Wong."],
# ["Chủ tịch nước Việt Nam hiện này là ai? Hãy sử dụng trình tìm kiếm."],
# ["Chủ tịch nước Việt Nam hiện này là ai?"],
['What did Jerome Powell say today?'],
['What is the best model on the LMSys leaderboard?'],
['Where does Messi play right now?'],
],
# ] + CHAT_EXAMPLES,
cache_examples=False
)
return demo_chat