-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathconfigs.py
125 lines (94 loc) · 3.77 KB
/
configs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import os
# ! UI Markdown information
MODEL_TITLE = "<h1>Multi-Purpose Chatbot</h1>"
MODEL_DESC = f"""
<div style='display:flex; gap: 0.25rem; '>
<a href='https://github.com/DAMO-NLP-SG/Multipurpose-Chatbot'><img src='https://img.shields.io/badge/Github-Code-success'></a>
</div>
<span style="font-size: larger">
A multi-purpose helpful assistant with multiple functionalities (Chat, text-completion, RAG chat, batch inference).
</span>
""".strip()
MODEL_INFO = """
<h4>Model Name: {model_path}</h4>
"""
CITE_MARKDOWN = """
## Citation
If you find our project useful, hope you can star our repo and cite our repo as follows:
```
@article{multipurpose_chatbot_2024,
author = {Xuan-Phi Nguyen, },
title = {Multipurpose Chatbot},
year = 2024,
}
```
"""
CSS = """
.message-wrap.svelte-1lcyrx4>div.svelte-1lcyrx4 img {
min-width: 200px;
min-height: 150px;
max-height: 600px;
max-width; 90%;
width: auto;
object-fit: contain;
}
.panel-full-width.svelte-1lcyrx4.svelte-1lcyrx4.svelte-1lcyrx4 {
padding: calc(var(--spacing-xxl) * 1);
width: 100%
}
"""
USE_PANEL = bool(int(os.environ.get("USE_PANEL", "1")))
CHATBOT_HEIGHT = int(os.environ.get("CHATBOT_HEIGHT", "500"))
ALLOWED_PATHS = []
DEMOS = os.environ.get("DEMOS", "")
DEMOS = DEMOS.split(",") if DEMOS.strip() != "" else [
"DocChatInterfaceDemo",
"ChatInterfaceDemo",
"TextCompletionDemo",
# "RagChatInterfaceDemo",
# "VisionChatInterfaceDemo",
# "VisionDocChatInterfaceDemo",
]
# DEMOS=VisionDocChatInterfaceDemo,DocChatInterfaceDemo,ChatInterfaceDemo,RagChatInterfaceDemo,TextCompletionDemo
# ! server info
PORT = int(os.environ.get("PORT", "7860"))
PROXY = os.environ.get("PROXY", "").strip()
# ! backend info
BACKEND = os.environ.get("BACKEND", "debug")
# ! model information
# for RAG
RAG_EMBED_MODEL_NAME = os.environ.get("RAG_EMBED_MODEL_NAME", "sentence-transformers/all-MiniLM-L6-v2")
CHUNK_SIZE = int(os.environ.get("CHUNK_SIZE", "1024"))
CHUNK_OVERLAP = int(os.environ.get("CHUNK_SIZE", "50"))
SYSTEM_PROMPT = os.environ.get("SYSTEM_PROMPT", """You are a helpful, respectful, honest and safe AI assistant.""")
MAX_TOKENS = int(os.environ.get("MAX_TOKENS", "2048"))
TEMPERATURE = float(os.environ.get("TEMPERATURE", "0.7"))
# ! these values currently not used
FREQUENCE_PENALTY = float(os.environ.get("FREQUENCE_PENALTY", "0.0"))
PRESENCE_PENALTY = float(os.environ.get("PRESENCE_PENALTY", "0.0"))
# Transformers or vllm
MODEL_PATH = os.environ.get("MODEL_PATH", "SeaLLMs/SeaLLM-7B-v2.5")
MODEL_NAME = os.environ.get("MODEL_NAME", "Cool-Chatbot")
DTYPE = os.environ.get("DTYPE", "bfloat16")
DEVICE = os.environ.get("DEVICE", "cuda")
# VLLM
GPU_MEMORY_UTILIZATION = float(os.environ.get("GPU_MEMORY_UTILIZATION", "0.9"))
TENSOR_PARALLEL = int(os.environ.get("TENSOR_PARALLEL", "1"))
QUANTIZATION = str(os.environ.get("QUANTIZATION", ""))
STREAM_YIELD_MULTIPLE = int(os.environ.get("STREAM_YIELD_MULTIPLE", "1"))
# how many iterations to perform safety check on response
STREAM_CHECK_MULTIPLE = int(os.environ.get("STREAM_CHECK_MULTIPLE", "0"))
# llama.cpp
DEFAULT_CHAT_TEMPLATE = os.environ.get("DEFAULT_CHAT_TEMPLATE", "chatml")
N_CTX = int(os.environ.get("N_CTX", "4096"))
N_GPU_LAYERS = int(os.environ.get("N_GPU_LAYERS", "-1"))
# llava.llama.cpp
# ! pending development
# Multimodal
# IMAGE_TOKEN = os.environ.get("IMAGE_TOKEN", "[IMAGE]<|image|>[/IMAGE]")
IMAGE_TOKEN = os.environ.get("IMAGE_TOKEN", "<image>")
IMAGE_TOKEN_INTERACTIVE = bool(int(os.environ.get("IMAGE_TOKEN_INTERACTIVE", "0")))
# ! IMAGE_TOKEN_LENGTH expected embedding lengths of an image to calculate the actual tokens
IMAGE_TOKEN_LENGTH = int(os.environ.get("IMAGE_TOKEN_LENGTH", "576"))
# ! Llava1.6 to calculate the maximum number of patches in an image (max=5 for Llava1.6)
MAX_PACHES = int(os.environ.get("MAX_PACHES", "1"))