-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patheval_with_rts_or_mcq.py
199 lines (169 loc) · 7.95 KB
/
eval_with_rts_or_mcq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import argparse
import json
import os
from tqdm import tqdm
from prompt_templates import prepare_rts_prompt, prepare_mcq_prompt, prepare_stareval_prompt
import time
# TODO: Important: enable your own openai key
import openai
from secret import my_key
openai.api_key = my_key
###### const #########
M_ID_LIST = ["M8","M9","M10","M11","M12","M13","M14","M15","M17","M20","M22","M23"]
annotation_dir = "model_output_annotations"
eval_root_dir = "eval_model_generations"
if not os.path.exists(eval_root_dir):
os.mkdir(eval_root_dir)
########### helper functions ############
def parse_arguments(parser):
###Eval Hyperparameters
# NOTE: "gpt-3.5-turbo-0301" may be deprecated, change to latest api model
# gpt-4, gpt-4-0314, gpt-4-32k, gpt-4-32k-0314, gpt-3.5-turbo, gpt-3.5-turbo-0301
parser.add_argument('--eval_model', type=str, default="gpt-3.5-turbo-0301", help="the ChatGPT model to use")
parser.add_argument('--dim', type=int, default=0, choices = [0,1,2,3], help="the evaluated dimension, see id2dim for conversions")
parser.add_argument('--eval_type', type=int, default=0, choices = [0,1,2], help="evaluation method, 0 for rts, 1 for mcq, 2 for stareval")
parser.add_argument('--start_idx', type=int, default=0, help="evaluated example line start index, don't change unless need to rerun due to chatgpt gives error half way...")
parser.add_argument('--end_idx', type=int, default=100, help="evaluated example line end index, don't change unless need to rerun due to chatgpt gives error half way...")
parser.add_argument('--print_full_prompt_without_calling_api', action="store_true", default=False,
help="print the full prompt for each example")
args = parser.parse_args()
for k in args.__dict__:
print(k + ": " + str(args.__dict__[k]))
return args
id2dim = {
0:"relevance",
1:"consistency",
2:"fluency",
3:"coherence"
}
eval_types = {
0: "reason",
1: "mcq",
}
def call_api(eval_type_id, aspect_id, summary, article, results_dir, print_only=False, eval_max_len=128):
# send request
if eval_type_id == 0:
eval_prompt = prepare_rts_prompt(aspect_id, summary, article)
elif eval_type_id == 1:
eval_prompt = prepare_mcq_prompt(aspect_id, summary, article)
elif eval_type_id == 2:
eval_prompt = prepare_stareval_prompt(aspect_id, summary, article)
# double-check full prompt before calling api
if print_only:
print(f"prompt:\n{eval_prompt}")
exit()
eval_msg = [
{"role": "user", "content": eval_prompt},
]
try:
response = openai.ChatCompletion.create(
model= eval_model,
messages=eval_msg,
temperature=0,
max_tokens=eval_max_len,
)
except Exception as e:
print("openai experiencing high volume, wait 10s to retry for 1st time...")
time.sleep(10)
try:
response = openai.ChatCompletion.create(
model= eval_model,
messages=eval_msg,
temperature=0,
max_tokens=eval_max_len,
)
except Exception as e:
print("openai experiencing high volume, wait 20s to retry for 2nd time...")
time.sleep(20)
response = openai.ChatCompletion.create(
model= eval_model,
messages=eval_msg,
temperature=0,
max_tokens=eval_max_len,
)
model_resp = response["choices"][0]["message"]["content"]
prompt_len = response["usage"]["prompt_tokens"]
total_len = response["usage"]["total_tokens"]
print(model_resp)
return (prompt_len, total_len, model_resp)
def main():
parser = argparse.ArgumentParser()
config = parse_arguments(parser)
start_idx = config.start_idx
end_idx = config.end_idx
dim_id = config.dim
eval_model = config.eval_model
eval_type_id = config.eval_type
eval_dir = os.path.join(eval_root_dir, eval_model)
if not os.path.exists(eval_dir):
os.mkdir(eval_dir)
print_only = True if config.print_full_prompt_without_calling_api else False
for M_ID in M_ID_LIST:
with open(os.path.join(annotation_dir, M_ID+"_outputs_annotations.jsonl")) as f:
print(M_ID)
dataset = [json.loads(line) for line in f]
# open files for score
eval_results_dir = os.path.join(eval_dir,"eval_"+M_ID+"_generations")
if not os.path.exists(eval_results_dir):
os.mkdir(eval_results_dir)
if eval_type_id == 0:
postfix = "_rts"
elif eval_type_id == 1:
postfix = "_mcq"
elif eval_type_id == 2:
postfix = "_stareval"
if dim_id == 0:
f0 = open(os.path.join(eval_results_dir, id2dim[0]+postfix+".txt"),"a", encoding="utf-8")
print("eval relevance")
for i in tqdm(range(start_idx, end_idx)):
example = dataset[i]
model = example['model_id']
assert model == M_ID
id = example['id']
summary = example['decoded']
article = example['text']
# get scores
prompt_len, total_len, resp = call_api(eval_type_id, dim_id, summary, article, eval_results_dir, print_only)
obj = {"id": id, "prompt_len":prompt_len, "total_len": total_len, "resp": resp}
f0.write(json.dumps(obj, ensure_ascii=False) + "\n")
if dim_id == 1:
f1 = open(os.path.join(eval_results_dir, id2dim[1]+postfix+".txt"),"a", encoding="utf-8")
print("eval consistency")
for i in tqdm(range(start_idx, end_idx)):
example = dataset[i]
model = example['model_id']
assert model == M_ID
id = example['id']
summary = example['decoded']
article = example['text']
prompt_len, total_len, resp = call_api(eval_type_id, dim_id, summary, article, eval_results_dir, print_only)
obj = {"id": id, "prompt_len":prompt_len, "total_len": total_len, "resp": resp}
f1.write(json.dumps(obj, ensure_ascii=False) + "\n")
if dim_id == 2:
f2 = open(os.path.join(eval_results_dir, id2dim[2]+postfix+".txt"),"a", encoding="utf-8")
print("eval fluency")
for i in tqdm(range(start_idx, end_idx)):
example = dataset[i]
model = example['model_id']
assert model == M_ID
id = example['id']
summary = example['decoded']
article = example['text']
prompt_len, total_len, resp = call_api(eval_type_id, dim_id, summary, article, eval_results_dir, print_only)
obj = {"id": id, "prompt_len":prompt_len, "total_len": total_len, "resp": resp}
f2.write(json.dumps(obj, ensure_ascii=False) + "\n")
if dim_id == 3:
f3 = open(os.path.join(eval_results_dir, id2dim[3]+postfix+".txt"),"a", encoding="utf-8")
print("eval coherence")
for i in tqdm(range(start_idx, end_idx)):
example = dataset[i]
model = example['model_id']
assert model == M_ID
id = example['id']
summary = example['decoded']
article = example['text']
prompt_len, total_len, resp = call_api(eval_type_id, dim_id, summary, article, eval_results_dir, print_only)
obj = {"id": id, "prompt_len":prompt_len, "total_len": total_len, "resp": resp}
f3.write(json.dumps(obj, ensure_ascii=False) + "\n")
if __name__ == "__main__":
main()