-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel_analysis.py
45 lines (37 loc) · 1.58 KB
/
model_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from ast import literal_eval
import scipy
from scipy import stats
import os
dataset = "mredplus"
root_dir = "results/model_analysis/"
with open(os.path.join(root_dir, dataset+"_bl.txt"), "r", encoding="utf-8") as f:
lines = f.readlines()
bl_enc_std = literal_eval(lines[1].strip())
bl_enc_doc = literal_eval(lines[3].strip())
bl_dec_std = literal_eval(lines[5].strip())
with open(os.path.join(root_dir, dataset+"_hierencdec.txt"), "r", encoding="utf-8") as f:
lines = f.readlines()
ours_enc_std = literal_eval(lines[1].strip())
ours_enc_doc = literal_eval(lines[3].strip())
ours_dec_std = literal_eval(lines[5].strip())
if len(bl_enc_std) == len(bl_enc_std) == 200:
enc_std_stats = scipy.stats.ttest_ind(bl_enc_std, ours_enc_std, equal_var=False)
print("encoder analysis:")
print("bl avg:", sum(bl_enc_std)/len(bl_enc_std))
print("ours avg:", sum(ours_enc_std)/len(ours_enc_std))
print(enc_std_stats)
print('\n')
if len(bl_enc_std) == len(bl_enc_std) == 200:
enc_doc_stats = scipy.stats.ttest_ind(bl_enc_doc, ours_enc_doc, equal_var=False)
print("encoder analysis:")
print("bl avg:", sum(bl_enc_doc)/len(bl_enc_doc))
print("ours avg:", sum(ours_enc_doc)/len(ours_enc_doc))
print(enc_doc_stats)
print('\n')
if len(bl_dec_std) == len(ours_dec_std) == 200:
dec_std_stats = scipy.stats.ttest_ind(bl_dec_std, ours_dec_std, equal_var=False)
print("dec_stdoder analysis:\n")
print("bl avg:", sum(bl_dec_std)/len(bl_dec_std))
print("ours avg:", sum(ours_dec_std)/len(ours_dec_std))
print(dec_std_stats)
print('\n')