-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconscious-architecture.tex
150 lines (119 loc) · 7.56 KB
/
conscious-architecture.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
\input{../YKY-preamble.tex}
\setmainfont[BoldFont=AlibabaSans-Regular.otf]{AlibabaSans-Light.otf}
\usepackage[active,tightpage]{preview} % for continuous page(s)zhong
\renewcommand{\PreviewBorder}{0.5cm}
\renewcommand{\thempfootnote}{\arabic{mpfootnote}}
\usepackage[absolute,overlay]{textpos} % for page number on upper left corner
\usepackage{color}
\usepackage{mathtools}
\usepackage[hyperfootnotes=false]{hyperref}
% \usepackage[backend=biber,style=numeric]{biblatex}
% \bibliography{../AGI-book}
% \renewcommand*{\bibfont}{\footnotesize}
\usetikzlibrary{shapes}
\usepackage[export]{adjustbox} % ??
\usepackage{bm}
\usepackage{verbatim} % for comments
% \usepackage{newtxtext,newtxmath} % Times New Roman font
% \numberwithin{equation}{subsection}
\newcommand{\underdash}[1]{%
\tikz[baseline=(toUnderline.base)]{
\node[inner sep=1pt,outer sep=10pt] (toUnderline) {#1};
\draw[dashed] ([yshift=-0pt]toUnderline.south west) -- ([yshift=-0pt]toUnderline.south east);
}%
}%
% Tic-Tac-Toe symbols
% \newcommand{\bO}[0]{\raisebox{-0.2em}{\textbf{O}}}
% \newcommand{\Xb}[0]{\raisebox{-0.2em}{\textbf{X}}}
%\DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n}
%\DeclareMathSymbol{\strictif}{\mathrel}{symbolsC}{74}
\DeclareSymbolFont{AMSb}{U}{msb}{m}{n}
\DeclareSymbolFontAlphabet{\mathbb}{AMSb}
% \setmathfont{Latin Modern Math}
% \newcommand{\highlight}[1]{\colorbox{pink}{$\displaystyle #1$}}
% \newcommand{\emp}[1]{{\color{violet}\textbf{#1}}}
\let\oldtextbf\textbf
\renewcommand{\textbf}[1]{\textcolor{blue}{\oldtextbf{#1}}}
\newcommand*\confoundFace{$\vcenter{\hbox{\includegraphics[scale=0.2]{../2020/../confounded-face.jpg}}}$}
\newcommand{\underconst}{\includegraphics[scale=0.5]{../2020/UnderConst.png}}
\newcommand{\KBsymbol}{\vcenter{\hbox{\includegraphics[scale=1]{../KB-symbol.png}}}}
\newcommand{\witness}{\scalebox{0.6}{$\blacksquare$}}
% \newcommand{\Heytingarrow}{\mathrel{-}\mathrel{\triangleright}}
% \providecommand\Heytingarrow{\relbar\joinrel\mathrel{\vcenter{\hbox{\scalebox{0.75}{$\rhd$}}}}}
\begin{document}
\begin{preview}
\cc{
\title{\vspace{-2.2cm} \bfseries\color{blue}{\large 逻辑化 AGI 基础}}
}{
\title{\vspace{-2.2cm} \bfseries\color{blue}{\large Logicalized AGI basics}}
}
% \author{YKY} % Your name
\date{\vspace{-3.2cm}} % Date, can be changed to a custom date
\maketitle
\setcounter{section}{-1}
% (1) Circled page number on upper left corner
\begin{textblock*}{5cm}(2.1cm,2.3cm) % {block width} (coords)
{\color{red}{\large \textcircled{\small 1}}}
\end{textblock*}
\begin{minipage}{\textwidth}
\setlength{\parskip}{0.4\baselineskip}
最基本结构是这样:
\begin{equation}
\vcenter{\hbox{\includegraphics[scale=0.5]{../2021/RL-WM-architecture.png}}}
\end{equation}
\vspace{-0.7cm}}:
再详细一点是这样:
\begin{equation}
\vcenter{\hbox{\includegraphics[scale=0.7]{../2021/minimal-RL-architecture.png}}}
\end{equation}
In classical logic-based AI, \textbf{inductive learning} means searching for a \textbf{theory} $T$ (= set of logic rules) that ``explains'' or \textbf{implies} positive examples but not negative ones:
\begin{equation}
\mbox{\large\(
T \vdash e^{+}, \quad T \nvdash e^{-}
\)}
\end{equation}
While logic learning is powerful, it relies on \textbf{combinatorial search} and was too inefficient, which caused ``AI Winter''.
\cc{
我理论的重点是: 透过 $F$ 在 RL 闭环内的训练,可以做到 \textbf{发现} 逻辑理论 $T$ 的效果。 }{
The main thrust of my argument is that training the function $F$ in the RL closed loop can effectively \textbf{discover} the logic theory $T$.}
\end{minipage}
\end{preview}
\begin{preview}
\begin{minipage}{\textwidth}
\setlength{\parskip}{0.4\baselineskip}
\begin{textblock*}{20cm}(2.1cm,2cm) % {block width} (coords)
{\color{red}{\large \textcircled{\small 2}}}
\hspace{8cm}
\color{blue}{\footnotesize \cc{逻辑化 AGI 基础}{Logicalized AGI}}
\end{textblock*}
\vspace*{0.3cm}
\cc{
首先可以了解一下几种``机器''之间的关系。 图灵机 演变成 \textbf{神经图灵机},这是``\textbf{注意力机制}''的起源。 \textbf{自注意力} 的特点是它有 \textbf{equivariance} 这种对称性,亦即是说,输入/输出元素的\textbf{次序}不重要。 也可以将这些元素看成一个 \textbf{集合} (例如 $\{1,2,3\}$ 跟 $\{3,2,1\}$ 是同一个集合)。 这种结构适合处理 \textbf{逻辑命题},因为 $A \wedge B = B \wedge A$.}{
Let's look at the interconnections between some ``learning machines''. Turing Machines inspired \textbf{Neural Turing Machines}, which is the origin of the \textbf{Attention} mechanism. \textbf{Self-Attention} has the symmetry of \textbf{equivariance}, which means that the \textbf{order} of input / output elements is unimportant. Another way to put it is that such elements have a \textbf{set structure}; for example $\{1,2,3\}$ and $\{3,2,1\}$ are the same set. The set structure is also suitable for handling logic propositions, because $A \wedge B = B \wedge A$.
}
\cc{
\textbf{Graph} 也是一种逻辑结构,因为 graph 可以\textbf{分解}为一堆节点之间的关系,例如 张三是李四的朋友 $\Rightarrow$ friend(Zhang$_3$, Li$_4$). 所以 \textbf{GNN} 是一种逻辑处理器。 另方面,语言模型 也使用 \textbf{Transformer} / Self-Attention. 所以我们推测,在 Transformer 语言模型里 也有逻辑规则的\textbf{涌现} (emergence), 而 Transformer circuits 的研究部分地证实了这一想法。}{
A \textbf{graph} is also a logical structure, as it can be decomposed into a bunch of nodes and links (relations). For example, John is Pete's friend $\Rightarrow$ friend(John, Pete). Thus the \textbf{GNN} is a logic processor. Similarly, Language Models are built from \textbf{Transformers} / Self-Attention. So we believe that logic-like rules may \textbf{emerge} in Transformer-based language models. Research on ``Transformer circuits'' partially confirms this.
}
\begin{equation}
\vcenter{\hbox{\includegraphics[scale=0.8]{AGI-standard-model.png}}}
\end{equation}
\cc{
然后关键的一步就是将 \textbf{end-to-end} 训练的模型 变成 \textbf{RL} 训练的形式\footnote{通常 RL 的 actions 是在环境中的动作,但我的 RL 模型 要求 actions 是一些 \textbf{思想} (thoughts),这并不规范,可能产生传统 RL 没有的问题。}。
前者可以看成是 进行 ``few-steps'' 的逻辑推导,而后者是可以 ``任意多步'' 的推导,而且这些推导 互相之间有 \textbf{协同效应} (一个推出来的结果帮助另一个新的推导)。 正是因为 \textbf{闭环训练} 容许了这些 协同效应,令 RL 系统有可能学习出能够\textbf{解释}世界的 logic theory.
}{
The next, crucial step is to change end-to-end training to the RL setting\footnote{Normally, actions in RL refer to what are performed in the external environment, but in my somewhat unorthodox formulation, actions are ``thoughts''. This may create some problems not seen in traditional RL.}.
The former can be seen as allowing ``few-steps'' logic inference, whereas the latter allows \textbf{arbitrary number} of inference steps. This enables logic rules to make use of results from other rules, creating a \textbf{cooperative effect}. Precisely due to closed-loop training and the synergy, an RL agent may be able to learn a logic theory that \textbf{explains} the world.
}
\end{minipage}
\end{preview}
\begin{preview}
\setlength{\parskip}{0.4\baselineskip}
\begin{textblock*}{20cm}(2.1cm,2cm) % {block width} (coords)
{\color{red}{\large \textcircled{\small 3}}}
\hspace{8cm}
\color{blue}{\footnotesize 逻辑化 AGI 基础}
\end{textblock*}
\vspace*{0.3cm}
\end{preview}
\end{document}